

Translational Research in Endometriosis

Patrick Groothuis Senior Research Scientist Women's Health Department Section Endometriosis and Hormone Dependent Disorders

ESHRE Campus Course, Leuven 2009

Key global R&D facts, 1995-2004

Schering-Plough

Success rates from first-in-man to registration

(Kola I., 2004 Nat Rev Drug Discovery)

9/7/2009 **3**

Reasons for attrition in the clinic

9/7/2009 4

What is slowing down drug development in endometriosis

- No validated, predictive therapeutic models
- No therapeutic models for endometriosis-related pain
- No diagnostic tools
- Clinical studies complicated: no biomarkers for patient stratification or early proof-of-concept
- No biomarkers/surrogate endpoints to monitor therapeutic efficacy endpoint, pain
- Lack of novel, innovative targets

Endometriosis pipeline late development

Overview of the endometriosis pipeline, 2007											
Brand/ Research code	Generic	Formulation	МоА	Originator	Licensee	Status	Country				
Visanne	dienogest	Oral	Progesterone agonist	Jenapharm GmbH & Co KG	Mochida, Bayer/ Schering	Pre- registration (Japan), Phase III3 (W EU)	Japan, W.EU				
Libra	deslorelin, estradiol, testosterone	nasal spray	GnRH agonist; estradiol agonist; Androgen receptor agonist	Balance Pharma	n/a	Phase III	US				
FP-1096	n/k	vaginal/ intrauterine	possible androgen	FemmePharma	KV Pharma	Phase III	US				
Proellex/ Progenta (CDB-4124)	n/k	oral capsule	Selective progesterone modulator	National Institutes of Health	Repros Therapeutics	Phase II	EU & US				
Femathina (MPI-674)	n/k	n/k	aromatase	Meditrina Pharma Pfizer ¹		Phase II	US				
ERB-041, WAY-202041	prinaberel	oral tablet	estrogen receptor	Wyeth Research	n/a	Phase II	US				
NBI-56418	n/k	Oral	GnRH antagonist	Neurocrine Biosciences	n/a	Phase II	US				
	terbutaline	vaginal gel	beta 2 adrenoreceptor	Columbia Laboratories and	n/a	Phase II	US				

9/7/2009 6

Overview of the endometriosis pipeline, 2007											
Brand/ Research code	Generic	Formulation	MoA	Originator	Licensee	Status	Country				
A-ENDO	n/k	Oral	agonist; Androgen modulator; estrogen & progesterone receptor agonist	Ardana Pantarhei Bioscience	n/a	Phase II	Netherlands				
SH-T-04268-H	n/k	Oral	Chemokine receptor antagonist	Bayer Schering Pharma AG	n/a	Phase II	EU				
Antarelix (EP-24332, TZTX-00a)	teverelix extended release	sub cutaneous injection	GnRH antagonist	Zentaris GmbH	Ardana	Phase I	UK				
PGL2001	n/k	n/k	steroid sulfatase inhibitor	PregLem	n/a	Phase I					
PSD-509 (M-5004)	n/k	vaginal/ intrauterine	sodium channel inhibitor	Metris Therapeutics	Plethora Solutions	Preclinical	UK				
Nestorone (ST-1435)	synthetic progestin	subdermal implant	Progesterone receptor agonist	Population Council	n/a	Preclinical	US				
1. Contract manufacturing and supply agreement with Pfizer GnRH – gonadotrophin, MoA – mechanism of action, n/a – not applicable, n/k – not known											
Source: MedTRACK, October 2007, Copyright Datamonitor Plc; IDdB, October 2007, Copyright Thomson Scientific											

Target discovery

Research focusses of academia and industry:

an understandable mismatch

University (Medical Center)

Hypothesis driven Funding guided Publication oriented

<u>Pharma</u>

Target/compound driven Patent/market oriented

Understand biology Improve diagnosis/therapy Identification of NCEs Proof-of-mechanism Structure-activity relation Develop novel, better, safer drugs

What makes a target

- A biological entity that is linked to a disease
- Inhibition (or activation) of this biological entity should reverse the development or inhibit progression of the disease
- Must be assayable in order to develop HTS assays
- Must be drugable

Currently Identified Drug Targets: ~ 500

Source: J. Drews, Hoffman - La Roche, Nature Biotechnology, November 1996

General R&D process

Success rates by phase of development

Failure rate of Proof-of-concept (Phase II) and efficacy studies (Phase III) is 80 %

Schering-Plough

General R&D process

Translational Research/Medicine

Translational medicine is the *integrated application* of:

- innovative pharmacology tools
- biomarkers
- clinical methods and technologies
- study designs to improve confidence in drug targets
- increase confidence in drug candidates
- understand the therapeutic index in humans
- enhance cost effective decision making

in exploratory development and increase phase II success leading to a sustainable pipeline of new products

Bruce H. Littman MD VP translational medicine Pfizer, quote 2006

Implementation

- Predictive therapeutic models
- ID and validate biomarkers prior to FIH
- Develop clinical assays/technolgies, i.e. MRI, serum/urine-based assays biomarkers/surrogate endpoints
- PK/PD
- Ask the right questions to get the right answers, to make the right decisions
- Early feedback from clinical studies

Ask the right questions to get the right answers, to make the right decisions

Compound selection

 Traditionally we only ask: does the drug work and is it safe?

 We need to ask other questions as well: why does it (not) work and why is it (not) safe?

Question based approach

- Does the compound get to the site of action?
- Does the compound modulate the target?
- Does the compound cause its intended pharmacological/functional effects?
- Does the compound have beneficial effects on disease or clinical pathophysiology?
- Does the compound modulate non-registration endpoints the predict efficacy
- What are the key toxicity issues related to the therapeutic target/compound that determines the efficacy/safety ratio
- What is the therapeutic window (how safe is the drug)?
- How do sources of variability in drug response in target population affect efficacy and safety?

BIOMARKERS

PK-PD models transform biomarkers into a quantitative decision making tool

- In many cases, biomarkers are the PD in PK-PD
- Optimal use of a biomarker requires that we relate the biomarker response to the PK data in order to understand the determinants of the response
- Mechanistic PK-PD models describing exposure-response and time course of response of biomarkers can:
 - increase our confidence in the mechanism of action
 - help predict the anticipated human dose and assess therapeutic window

Important assets of PK-PD M&S in relation to biomarker data

- PK-PD models can do more than describing concentration response relationships:
 - Can describe time dependencies in response to treatment
 - Can range from **empirical** to **mechanistic**
 - Allow pooling of data from different trials and different sources (e.g. literature)
 - Translate biomarker data across species
 - Models enable predictions of drug effects in situations that have not yet been tested

Preclinical vitro/vivo disease models

- Cultures (immortalised) cells from endometrium/endometriotic tissue
- Tissue recombination under renal capsule immortalized human endometriotic cell lines
- Mouse primary xenografts (human endometrium/endometriosis tissue from patients)
- Non-human primate models for endometriosis (Rhesus maqaque, baboon)

General R&D process

Translational research in endometriosis

- Rigorous validation of targets and disease models is needed in order to confidently select the best compounds as early as possible
- Biomarkers/surrogate endpoints (and validated assays to measure them, are essential to be able to receive clinical feedback in a much earlier stage in order to realise earlier deselection/selection of clinically active compounds

