

Carlos Simón

PRINCIPE FELIPE CENTRO DE INVESTIGACION

undación

Vniver§itat 🖗 🗈 València

The endometrium is composed of luminal epithelium and epithelial-lined glands surrounded by a supportive stroma. It can be divided into a functional (removed layer) and basal (regenerating layer) compartments.

HUMAN ENDOMETRIUM

CONCEPT OF NICHE

HIERARCHY OF STEM CELLS

Endometrial Stem Cell Niche: Hypothesis

INDIRECT EVIDENCE FOR THE EXISTENCE OF ESSC

CELL-CLONING STUDIES

Capacity of forming colonies, one of the typical characteristics of stem cells.

Clones	Clonogenicity (%)		
	Epithelial	Stromal	
Large	0.08 ± 0.03	0.02 ± 0.01**	
Small	0.14 ± 0.04	1.23 ± 0.18**	
Total	$0.22 \pm 0.07*$	$1.25 \pm 0.18*$	

The cloning efficiency does not vary significantly across the menstrual cycle; or between cycling and inactive endometrium

(Schwab et al., Fertil Steril 2005).

Chan et al., Biol Rep 2004.

IMPLICATION OF BONE MARROW

Taylor., JAMA 2004.

IMPLICATION OF BONE MARROW

• Presence of donor-derived cells were detected in endometrial biopsy. A significant chimerism were confirmed in the cell composition of the glands of four patients who had undergone a bone marrow transplant.

- Percentage of donor- derived cells in endometrium increased with time:
- 0.25% at 24 months,
- 4% at 35 months,
- -10.5% at 129 months,
- -50% at 147 months.

• First study suggesting hematopoietic origin in the repopulation and regeneration of the endometrial tissue after bone marrow transplantation.

Taylor., JAMA 2004.

ESSC IN MURINE ENDOMETRIUM

METHOD OF 5-BROME-2-DEOXYURIDINE (BrdU) BrdU is incorporated into genomic DNA during the replication phase of the mitotic cycle labelling new cells. Identification of label retaining cells (LRC) in epithelial and stromal compartment of murine endometrium.

ESSC IN MURINE ENDOMETRIUM

The BrdU retained cells in mice endometrium decreases with age.

Cervelló et al., Human Reprod 2007.

After labelling, the BrdU signal is progressively decreased in each division. The retention of the labelling in some populations means no division or very low rate of division, one of the main characteristic of somatic/progenitor stem cells.

Chan and Gargett., Stem Cells 2006.

PUTATIVE ENDOMETRIAL STEM CELL MARKERS

	Stem Cell Marker	Endometrial localization	Reference
POU5F1	Embryonic stem cell	In humans, it co-localise with Vimentin and Cytokeratin. In murine populations, co-localization of BrdU- retaining cells.	Matthai <i>et al.</i> ,2006 Cervelló <i>et al</i> .,2007
CD90	Cultured Mesenchymal stem cell	In humans, it differentiates the expression in the basalis and functionalis stroma.	Schwab and Gargett, 2008
CD146	Endothelial cell, perivascular cell and Mesenchymal stem cell	In humans, it co-expresses with PDGF-Rß.	Schwab and Gargett, 2007,2008
c-Kit	Hematopoietic stem cell and mast stem cells	In humans, mainly in the stroma. In murine samples, co-localization of BrdU- retaining cells.	Cho <i>et al.</i> ,2004 Cervelló <i>et al.,</i> 2007 Goodell <i>et al.</i> ,2008
CD34	Hematopoietic stem cell and endothelial cells	In humans, mainly in the stroma.	Cho <i>et al.</i> ,2004
STRO-1	Mesenchymal Stem cells	In humans, is located on the perivascular regions of the endometrium	Schwab et al., 2008.

Cervelló et al., Expert Reviews 2009.

• Existence of SSC in murine endometrium was demonstrated by BrdU method.

(Chan and Gargett., Stem cells, 2006; Cervelló et al., Human Rep., 2007)

• Recent studies demonstrate that human endometrium contains a rare MSC-like population .

(Chan et al., Biol Rep., 2004; Schwab and Gargett,. Human Rep, 2007; Wolff et al., Reprod.Sci., 2007.; Gargett et al., Biol Rep.,2009)

• In the menstrual blood the existence of a stem cell-like population has been demonstrated. *(Meng et al., J Transl Med, 2007)*

• SSC have differentiated into mesoderm-derived lineages in vitro.

Schwab and Gargett, Human Rep, 2007 Wolff et al., Reproductive Sciences, 2007.

ESSC IN HUMAN ENDOMETRIUM

Side Population: Hoechst Method and Cell Sorting

SIDE POPULATION METHOD

• Side Population (SP) method was described for SSC isolation in bone marrow based on the ability to efflux Hoechst33342-fluorescence dye. *(Goodell et al., J Exp Med. , 1996)*

• This property is present in cells enriched in ABC transporters and has been documented in the detection of SSC in human myometrium, lung and dental pulp. (Ono et al., PNAS, 2007; Martin et al., Cytotherapy, 2008; Iohara et al., Stem

(Ono et al., PNAS, 2007; Martin et al., Cytotherapy, 2008; Iohara et al., Stem Cells, 2008)

• It has also been proposed recently in the human endometrium although not functionally demonstrated yet. *(Kato et al., Human Rep., 2007; Tsuji et al., Fertil Steril., 2008)*

ESSC IN HUMAN ENDOMETRIUM

Kato et al., Human Reprod 2007.

COULD THE SP REPRESENT THE SOMATIC STEM CELL POPULATION IN THE HUMAN ENDOMETRIUM?

SP IN HUMAN ENDOMETRIUM

Epithelial SP $1.0 \pm 0.8\%$ (n=60) Stromal SP $0.3 \pm 0.3\%$ (n=90)

% SP during Reproductive Life

PHENOTYPIC ANALYSIS

✓ Phenotypic analysis of Side Population cells:

The SP cells were labeled with:

- markers associated with Hematopoietic progenitor cells like CD45-FITC and CD34-PE.

- Mesenchymal stem cells markers like CD90-PE and CD105-FITC.

SP MOLECULAR ANALYSIS

MICROARRAYS ANALYSIS

✓ Microarrays analysis of Epithelial and Stromal Side Population versus total compartments:

MICROARRAYS ANALYSIS

TOP TEN MOLECULES SP stromal cells

Molecules MMP3	Exp. Value	Molecules	Exp. Value +-4.331
RND3	+ 6.412	SCGB1D2	↓ -4.321
SERPINB2	† 6.275	SERPINA5*	+-4.185
SLC4A1	† 6.026	ASRGL1*	
ANGPTL4	<mark>+</mark> 5.820	SOX17	+-3.567
INHBA	<u>+</u> 5.674	SCGB2A1	 3.169
IER3	+ 5.578	HGD	-↓ -3.105
KRT34	† 5.502	ACSL5	 3.105
GDF15	+ 5.367	TPD52L1	↓ -3.085
ADM	† 5.324	ST6GALNAC1	+-3.083

SP stromal cells vs Stromal cells: 121 genes up-regulated 74 genes down-regulated

Molecular and cellular Functions: -Cell signalling and interaction -Cellular growth and proliferation -Cellular movement -Cell death -Cell cycle

TOP TEN MOLECULES SP epithelial cells

Molecules	Exp. Value	Molecules	Exp. Value
IL1B	+19.823	FOXE1	↓ -12.402
CXCL1	↑ 19.069	PCSK1N	↓ -11.151
HSPA6	+ 16.887	POU3F3	↓ -9.126
TUBA4A	13.661	NEUROG1	+-8.531
CCL4	13.402	SYNPO	+-7.969
POLR2J2	<u>+</u> 13.321	CACNA1E	↓- 7.794
CACNG5	† 13.281	CRHR2	+-7.654
GDF15	† 12.487	IER5*	↓ -7.654
CD69	11.971	NEUROG3	↓ -7.593
RGS1	<u>+</u> 11.604	SYN1	+-7.002

SP epit cells vs Epithelial cells: 196 genes up-regulated 116 genes down-regulated
Molecular and cellular Functions: -Cell signalling and interaction -Cellular growth and proliferation -Cellular movement -Cell death

MICROARRAYS ANALYSIS

✓ Microarrays comparison with keratynocites SP:

Larderet et al., Keratynocites. Stem cells. 2006.

CLONING OF SP CELLS IN HYPOXIC CONDITION

✓ Cell culture conditions: $2\% O_2$, $37^\circ C$, $5\% CO_2$, 90% humidity:

300-500 cells/cm² were seeded into 60-mm Petri dishes coated with gelatine 0.1%, cultured in serum medium, incubated for **15 days** and stained with 0.5%Toluidine Blue for 5 min.

CLONING EFFICIENCY CE (%) = (Number of colonies/number of cells seeded) × 100.

CLONING EFFICIENCY

DIFFERENTIATION IN VITRO

✓ Functional proof of concept in vitro inducing adipocyte differentiation:

✓ Functional proof of concept in vivo using NOD-SCID female mice:

IN VIVO DIFFERENTIATION

• mRNA human (79 pb)

• mRNA mice (75 pb)

Flasza et al., Cloning and Stem Cells, 2006.

IN VIVO DIFFERENTIATION

Hu: putative human glands Ms: mice glands. Hu+: human endometrium Ms+: mice endomtrium C-: water

ADULT STEM CELLS IN HUMAN ENDOMETRIUM

C'ELLE

EVERY MONTH HOLDS A MIRACLE

C'ELLE IS AVAILABLE NOWI TO START COLLECTING AND PRESERVING YOUR BODY'S PRECIOUS STEM CELLS, PLEASE CLICK THE BUTTON BELOW.

PNAS

Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells

Masanori Ono*, Tetsuo Maruyama*[†], Hirotaka Masuda*, Takashi Kajitani*, Takashi Nagashima*, Toru Arase*, Mamoru Ito[‡], Kuniaki Ohta*, Hiroshi Uchida*, Hironori Asada*, Yasunori Yoshimura*, Hideyuki Okano[§], and Yumi Matsuzaki^{†§}

Departments of *Obstetrics and Gynecology and ⁵Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; and ⁴Central Institute for Experimental Animals, Kawasaki, Kanagawa 216-0001, Japan

• In vivo FORMATION OF MYOMETRIUM

100.000 Myo SP cels por horn 100.000 Myo NSP cels por horn

In vitro differentiation

OSTEOCITES

PHENOTYPE

CONCLUSIONS

> SP account for 0.3% and 1% of the stromal and epithelial compartment respectively. Their percentages remain constant during reproductive life.

> Phenotype of SP suggest a mesenchymal origin.

> They display an intermediate pattern of telomerase activity, and are positive for c-Kit, Oct-4 and BCRP-1

> Wide genome analysis demonstrated a differential gene expression profile of SP compared to its endometrial fraction. A common SP signature is suggested.

> SP cells do not growth in normoxic conditions. In hypoxic conditions, SP cells display high cloning efficiency compared to NSP and total fraction.

> Stromal and epithelial SP have been differentiated in vitro to adipocytes, osteocytes and condrocytes.

 \succ The functional proof of concept is given by the ability of SP cells to reconstruct the human endometrium in an animal model.

Claudia Gil and Aymara Mas.

PRINCIPE FELIPE CENTRO DE INVESTIGACION

VNIVER[§]ITAT Ö IDVALÈNCIA