
Types of Research

Research – Theory and Practice Brussels, Belgium March 4-5, 2010

Types of research

Animal studies Human cell, tissue and fluid analyses

- Primary human studies
- Randomized controlled trials
- Other controlled trials
- Cohort studies (prospective, retrospective)
- Case control studies
- Cross-sectional studies and surveys
- Case series and case reports
- Synthesis: narrative reviews, systematic reviews, decision analysis, economic analysis, guidelines

- Function: noun
- Etymology: Middle French *recerche*, from *recercher* to go about seeking, from Old French *recerchier*, from *re-* + *cerchier*, *sercher* to search
- Date: 1577
- 1 : careful or diligent search
- **2**: studious inquiry or examination; *especially*: investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or

laws **3**: the collecting of information about a particular subject

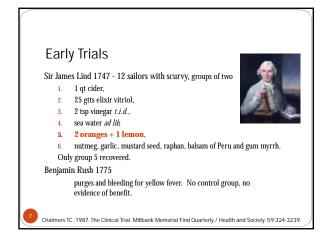
http://www.merriam-webster.com/

Types of Research

Background

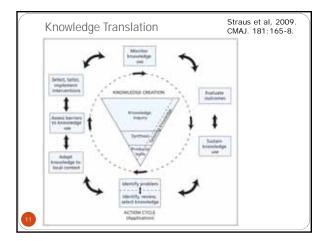
- History of medical research
- Research and knowledge translation
- Sequence of clinical research studies
- When trials are not necessary

Types of clinical studies


Assessment and application

History of medical research

 John Hunter FRS, (13 February 1728 – 16 October 1793) was a Scottish surgeon regarded as one of the most distinguished scientists and surgeons of his day. He was an early advocate of careful observation and scientific method in medicine. The Hunterian Society of London was named in his honour.



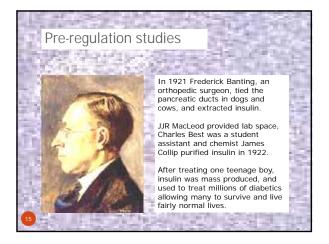
/	Research ar	nd knowledge translation
	First generation knowledge	Primary research studies
	Second generation knowledge	Synthesis of research reports
	Third generation knowledge	Guidelines, decision aids, economic analyses
10	Straus et al, 2009. CM	AJ. 181:165-8.

Knowledge translation

- Knowledge translation is about turning knowledge into action and encompasses the processes of knowledge creation and knowledge application.
- Related terms: knowledge transfer, knowledge exchange, research utilization, implementation, diffusion, and dissemination.

Lost in knowledge translation: time for a map? Graham ID, Logan J, Harrison MB, Straus SE, Tetroe J, Caswell W, Robinson N. J Contin Educ Health Prof. 2006 Winter;26(1):13-24.

Intervention development sequence


Pre-clinical studies: animal and laboratory research Phase I studies: safety in 20-30 healthy volunteers Phase II studies: effects, safety and dose ranging (100s) Phase III studies: RCTs in patients (100s to 1000s) Phase IV studies: post marketing surveillance, health economic studies, safety studies (1000s)

http://www.centerwatch.com/clinical-trials/overview.aspx

The ART regulatory viewpoint

Spectrum of evidence

Horizon Scanning	Innovative Practice	Established Practice
Animal studies	Case reports, case series	RCTs show effectiveness
Human cell & tissue studies	Initial RCTs	Continuing research on safety

When trials are not necessary

- Salicin for acute rheumatism (Maclagan 1876)
- Insulin for diabetes (Banting, 1922)
- Blood transfusion for haemorrhagic shock (Blundell, 1930s)
- Sulphanilimide for puerperal sepsis (Colebrook 1937)
- Streptomycin for tuberculous meningitis (MRC 1948)
- Defibrillation for ventricular fibrillation (Beck 1947)
- Neostigmine for myasthenia gravis (Walker 1934)
- Tracheostomy for tracheal obstruction (Adams et al 1969)
- [IVF for tubal obstruction (Steptoe & Edwards, 1976)]

Glasziou & Chalmers, 2007. Picking signal from noise. BMJ 334:349-51.

What is common to these interventions?

The effectiveness is dramatic. The results are self-evident.

<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

It's not the intervention, it's the application

Pre-implantation genetic diagnosis

- Couples with a specific genetic defect
- Polymerase chain reaction (PCR) for genetic defect, or
- Fluorescent in situ hybridization (FISH) for chromosome analysis
- RCTs necessary?

Pre-implantation genetic screening

- IVF candidates with risk of aneuploidy (eg, female age)
- FISH for limited chromosome analysis or
- comparative genomic hybridization (CGH) for 23 chromosomes
- RCTs necessary?

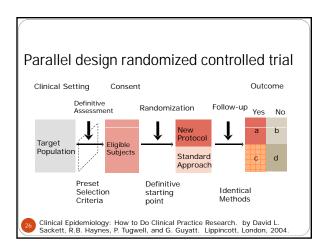
Types of Research	
Background	
Types of clinical studies	
RCTS Cohort studies Case control studies	
Assessment and application	

Diagnosis	Prognosis	Treatment	Harm*
Dx test studies	Cohort studies	RCTs	Case reports Case control studies Cohort studies RCTs

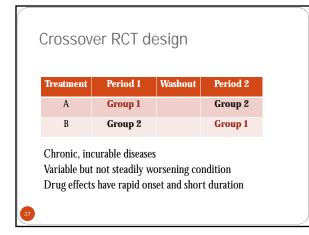
Design	Advantage	Disadvantage
RCT: parallel	Less bias	Narrow range
RCT: cross-over	Less variance	Few indications
N of one RCT	Least variance	Only relevant to subject
Prospective cohort	Inobtrusive	Bias between groups
Historical cohort or CC	Ready made data	Many sources of bias
Case series	Simple and direct	Not evaluable unless insulin

Treatment studies: types of RCT

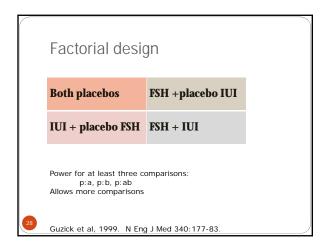
Rationale: efficacy or effectiveness Design architecture: parallel, crossover, factorial Logistics: single or multicentre Sample size: fixed or sequential sample size Aim: superiority, equivalence, non-inferiority

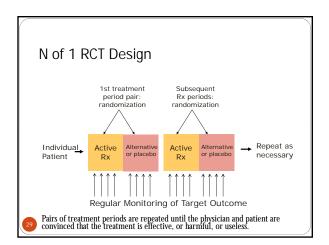

³⁹ Arce et al, 2005. Hum Reprod 20:1757-71.

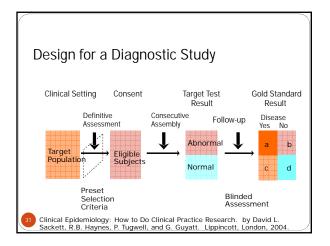
Terminology		Authors
Explanatory	Pragmatic	Schwartz & Lellouch, 1967
Efficacy	Effectiveness	Cochrane, 1972
Fastidious	Pragmatic	Feinstein & Horwitz, 1982
Can it work?	Does it work?	Haynes, 1999.



RCT design architecture

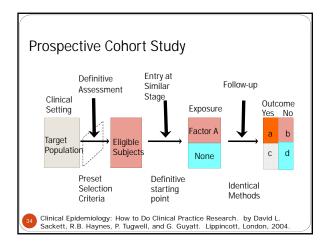

Parallel design Cross-over design chronic, incurable diseases effects have rapid onset and short duration condition must be stable Factorial design placebo, a, b, a + b N of 1 trials





tu alu Da alam			
itudy Design	s for Diagnos	sis Questions	
Design	Purpose	Problems	
RCT	Is test effective?	Can't do accuracy	
Prospective cohort	Assess accuracy	Possible bias	
Historical cohort	Assess accuracy	Additional bias	
	Pilot study	Not evaluable	

Γ

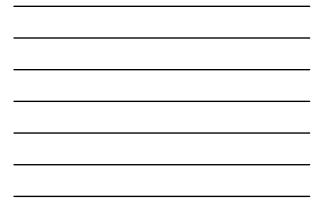


Criteria for a diagnostic study

- 1. Patients: typical clinical features that indicate use of this diagnostic test.
- 2. Assembly: consecutive assembly of patients.
- 3. Intervention: the cohort is divided by the test result into two groups, with either abnormal or normal results.
- 4. All patients receive the gold standard test to determine which ones truly have the disease.

	Study Designs	for Prognosis Questions	
	RCT	Not practical just for prognosis	
	Prospective cohort	Takes time, allows comparisons	
	Historical cohort	Takes less time, but more biased	
	Case control	Limited to single outcome	
	Case series	Takes time, comparisons post hoc	
33	Spitzer 1973. Ten tips	on preparing research proposals. Can Nurse 1	7:30-3.

Criteria for a cohort study

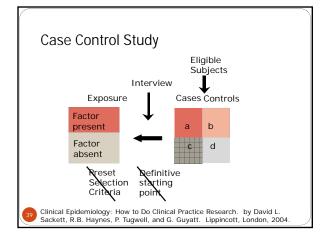

- Investigator starts with a group of individuals apparently free of the disease(s) of interest.
- Determine exposure status.
 The cohort is divided into those exposed and not exposed to the factor of interest.
- Measurement of the disease. The cohort is followed to determine the incidence rate or mortality from the disease(s) of interest.

Cohort Study Advantages

Advantages

- Can evaluate rare events
- Can use a large administrative database
- Disadvantages
- Exposed and unexposed subjects may have different baseline risk of disease
- Can adjust for the effect of known prognostic
- factors, but not those that remain unknownProspective cohort studies are expensive
- 6

Design	Issues
RCT	Not solely for harm (WHI)
Prospective cohort	OK if adverse events common
Historical cohort	Subject to bias
Case control	Most likely design, risk of bias
Case series, case reports	Often the first alarm

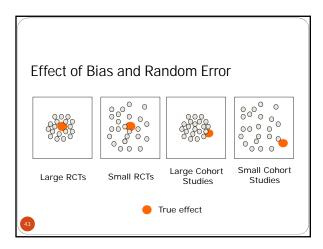

Does causation exist?

Proof of causation requires:

- 1. Is there evidence from true experiments in humans?
- Is the association strong?
 Is the association consistent from study to study?
- to the association consistent from study to study?
 Is the temporal relationship correct (exposure precedes disease?
 Dose-response relationship?
 Does the association make epidemiological sense?
 Does the association make epidemiological sense?

- 8. Is the association specific to this exposure and disease?9. Is the association analagous to a previously proven causal association?

Sackett et al, 2004. From Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–30.


Case control study criteria

- 1. Investigator starts by identifying cases Cases are persons with the disease of interest
- 2. Controls without the disease are selected Controls should come from the same population that gave rise to the cases: population, hospital
- 3. Measurement of exposures Cases and controls are interviewed to ascertain background characteristics and exposures. Ideally interviewers are blind to the question of interest

Strengths and Weaknesses of Different Designs

Design	Start with	Ascertain	Strengths	Weaknesses
RCT	Randomization	Outcome event	Low susceptibility to bias	Expensive, may not generalize
Cohort	Beginning of exposure	Outcome event	May be feasible if RCT is not possible	Expensive, bias limits validity
Case Control	Outcome status	Exposure status	Quicker, smaller sample size	Bias very likely to limit validity

Types of Research
Background
Types of clinical studies
Assessment and application
BiasQuality of evidenceEvidence in practice



Study Design, Random Error and Bias

Large sample size reduces the effect of random error but does not rule out bias. Valid study designs minimize bias, but small valid studies are still subject to random error.

¹⁴ Guyatt & Rennie 2002. Users' Guides. AMA Press Chicago. 224, 330.

Reducing Bias in RCTs and Epi Studies (1)			
Sourc	e of Bias	RCTs	Epidemiological Studies
	oups differ in gnosis	Randomization	Statistical adjustment for prognostic factors
2. Pla	cebo effects	Blinding of patients	Choose unarguable outcomes (birth, death)
3. Co	-intervention	Blinding of caregivers	Documentation and statistical adjustment

Doducing Piac i	n DCTs and Eni	Studios (2)
Reducing Bias i		. ,
Source of Bias	RCTs	Epidemiological Studies
4. Biased outcome assessment	Blinding of outcome assessors	Choose unarguable outcomes (birth, death)
5. Loss to follow- up	Ensure complete follow-up	Ensure complete follow-up

Assessment of medical evidence

It is time to write up your results. How will the journal assess your research? (See Friday morning with Prof Van Steirteghem)

Then your publication will join a body of similar clinical evidence. How will that body of evidence be assessed by other researchers?

Assessment of medical evidence

The value of the evidence about a given clinical intervention depends on

1. the quality of the individual research studies

2. the strength of the body of evidence comprising all studies relevant to the intervention

Lohr, KN. Rating the strength of scientific evidence. International Journal for Quality in Health Care 2004; 16(1): 9-18.

Qu	ality of individual articles	Number of systems
	Systematic reviews and meta-analyses	20
	Randomized controlled trials	49
	Observational studies	19
	Diagnostic test studies	18
Ove	erall strength of a body of evidence	40

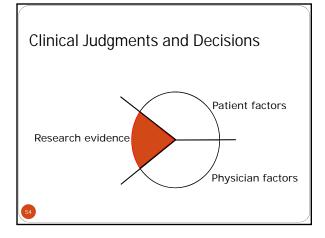
1.	Quality of	the individual	studies

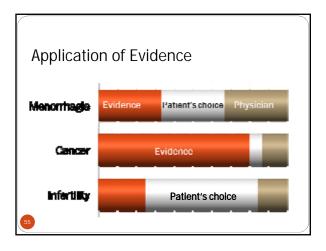
	Level	Study types	
	Ι	Randomized controlled trials	
	II	Cohort studies, prospective or retrospective Case control studies	
	III	Case series, case reports	
50	Harbour & Miller, 2001. BMJ 323:334-40.		

2. Quality of the body of evidence

Criterion	Description	
Quality	the aggregate of quality rankings for the individual studies.	
Quantity	the number of individual studies the sample size or power of those studies the size of the effects of the intervention the extent of agreement among studies that make use of different types of patients, different clinical settings and different study designs	
Consistency		
www.ahrq.gov/clinic/epcix.htm. Lohr KN, 2004. Int J Qual Health Care 16:9-18.		

Application of research in patient care


In your research a counselling intervention increased IVF birth rates. Now that your research has been published, how will it affect patient care?


How is evidence used?

Medical Evidence	Patient's Preferences	Clinician's recommendations
Imposes society's values	Education, beliefs, social resources, financial resources	Knowledge, skills, experience, and beliefs
Is of variable quality	Severity of disease, concurrent conditions	Health care system rules and resources

