

Introduction to Andrology and Embryology

Dr Karen Turner Consultant Embryologist Oxford Fertility Unit

What is Andrology and Embryology?

- ANDROLOGY: Study of medical conditions specific to males, particularly infertility and sexual dysfunction
- EMBRYOLOGY: Study of the formation and development of embryos from a fertilised egg cell to differentiation into tissues and organs

ANDROLOGY

Semen analysis - WHO Criteria (1999)

- Abstinence 2 5 days
- Concentration > 20 mill/ml
- Motility > 50% progressively motile
- Morphology > 30% normal (determined in-house)
- Antisperm antibodies < 20%</p>

Classifications of sperm

- Normozoospermia: Production of sperm in normal numbers and motility
- Oligozoospermia: Low sperm count. Concentration < 20 Mill/ml
- Asthenozoospermia: Reduced sperm motility. Progressive motility < 50%
- Teratozoospermia: Reduced numbers of sperm with a normal appearance (morphology). Normal morphology < 30%

Oligoasthenoteratozoospermia

OATs: Reduced count, motility and normal forms

Further Classifications

- Aspermia: No ejaculate ie complete lack of semen
 - eg retrograde ejaculation
- Azoospermia: No spermatozoa in the ejaculate
 - obstructive: where sperm are created, but cannot mix with the rest of the ejaculatory fluid due to a physical obstruction (eg CBAVD)
 - non-obstructive: where there is a problem with spermatogenesis

Further classifications

- Cryptozoospermia: Apparent azoospermic sample but where sperm are found during analysis only after centrifugation
- Necrozoospermia: Samples with only dead sperm (not necessarily just immotile sperm)
- Globozoospermia: Often referred to as 'round-head' defect. Sperm morphological defect where the acrosome is absent and sperm usually have small round heads

What can we do if the sperm is sub-optimal?

I.C.S.I.

Extraction of sperm from testicular tissue

- Where no sperm are produced in the ejaculate
- Surgical procedure to extract tissue direct from testes
- Samples can be frozen in advance of use

EMBRYOLOGY	

Meiosis

- A two-part cell division process (I and II) which results in gametes with onehalf the number of chromosomes of the parent cell
- Thus when sperm and egg come together the normal chromosome content of the parent is restored

Insemination

Conventional IVF or ICSI

- Oocyte retrieval at 35 hrs post hcg
- Insemination / injection 4 6 hrs post oocyte retrieval
 - CIVF: 100 250 K motile sperm per ml
 - ICSI: 1 sperm / egg
- Incubated overnight

Embryo grading

Which embryos to transfer?

- Law permits transfer of 2 embryos or exceptionally 3
- Pronucleate morphology
- Early cleaving embryos
- Morphological appearance of cleaved embryos
- Progression to blastocyst

Pronucleate Morphology Better embryo morphology Higher pregnancy rates Reduced embryonic arrest Higher implantation rates

- Higher multiple pregnancy rates
 - Scott et al. 2000, 2007

mbryo Grading						
	A	В	С	D		
Α	34.2% 608/1778	28.5% 69/242	33.8% 138/408	17.2% 5/29		
В		22.5% 9/40	17.8% 18/101	12.5% 1/8		
С			31.5% 112/356	17.0% 15/88		
D				12.2% 5/41		

2007 – Patients with 2 ET						
Day ET	Day 2	Day 3				
No. Transfers	217	424				
No. Clinical Pregnancies	57 (26.3%)	173 (40.8%)				
Pregnancies						

Г

Sequential Media

- Reflects changing embryonic environment
- Composition alters with changing metabolic needs of the developing embryo
- Contains amino acids, carbohydrates and vitamins

Blastocyst transfer - potential advantages

- Synchronisation of embryos with endometrium
- Improved embryo selection
- Increased implantation rate
- Decreased multiple pregnancy rate by moving towards single embryo transfer

What can go wrong?

Abnormal development

Summary

- Accurate diagnostic assessment of sperm samples is essential for appropriate treatment
- Important to know and understand what is normal/abnormal for both sperm and embryos before and after treatment
- Important to be aware of abnormality rates, especially after IVF to troubleshoot and optimise your own system