SNP Microarray Genetic Analyses to Determine 23-24 Chromosome Ploidy, Structural Chromosome Aberrations and Genome-Wide Scans to Identify Disease Risks from a Single Embryonic Cell

WG Kearns

Shady Grove Center for Preimplantation Genetics Shady Grove Fertility Reproductive Science Center Rockville, MD USA

Indications for Genetic Assessment of Embryos

- Aneuploidy Screening (PGS)
- Structural Chromosome Aberrations (PGD)
- Single Gene Disorders (PGD)
- Mitochondrial Disorders (PGD)

Cell Types - Biopsy

Polar Bodies

- Meiosis I errors
- Meiosis II errors
- X-linked disorders

Blastomeres

Current Benefits and Limitations

- Aneuploidy
- Structural chromosome aberrations
- Single gene disorders
- Mitochondrial disorders

Aneuploidy

 Fluorescence in situ Hybridization (FISH) on interphase nuclei

Comparative genomic hybridization (CGH) on metaphase chromosomes

FISH Limitations

- Single "spot-check" to test for the presence of a specific chromosome
- Cells are in interphase
- Limited fluorochromes
- Reduced accuracy with additional probes
- Fixation/nuclear spreading
- ~ 10-12 chromosomes tested

Controversies for PGS

Does aneuploidy screening work?

- New England Journal Paper, Mastenbroek et al (July, 2007)
 - 8 chromosomes assessed
 - Showed no improvement in implantation
- BUT
 - Maternal age (35-41)
 - We wouldn't offer PGS
 - Many 4-cell embryos biopsied
 - 20% no fluorescence in situ hybridization (FISH) results
 - Failed to test for chromosomes 22 and 15 (~ 25% of aneuploidy)
 - Tested for chromosome 1 ???
 - Biopsied 2 cells sometimes

Controversies for PGS

 PGS doesn't improve clinical pregnancy rates (gestational sac and fetal heart beat) and delivery rates

- ASRM Practice Statement, October 2007
- ESRE Practice Statement July 2008
- ACOG May 2009

No prospective, randomized studies to date

CGH on Metaphase Chromosomes

CGH Benefits and Limitations

Tests for all 23-pairs of chromosomes

Limitations – hybridization takes ~ 3 days and requires an FET

What are the Issues / Risks of PGS?

- Test Limitations
 - FISH Limited chromosomes
 - CGH requires an FET
- Embryo mosaicism?

- Damaging the embryo during the biopsy?
 - Reduced implantation?
 - Biochemical pregnancy?

What are the Issues / Risks of PGS?

Embryo correction of day-3 embryo?
– CVS – Placental aneuploid colonies

Biopsy a Better Cell Type?

Trophectoderm

What are the Issues / Risks of Trophectoderm Biopsy and PGS?

- Mosaicism?
 - Inner cell mass
 - Trophectoderm

PGS – Trophectoderm – Clinical Trial

n = 33 cases

FISH for Chromosomes 13, 14, 15, 16, 17, 18, 21, 22, X and Y

- Patient recruitment 3+ blasts
- Indication for PGS
- 24 hr turnaround from thaw to transfer
- 114 blasts thawed
- 78% blast survival
- 67% re-expansion
- 83% were biopsied
- 100% PGD results
- PGS (10 chromosomes) 41% normal, 59% abnormal
- Biopsied cells (mean = 5/patient)

PGS – Trophectoderm – Clinical Trial

n = 33 cases

3 had no transfer 70% (21/30) + FHT with gestational sac (all > 12 weeks) 3% (1/30) Biochemical 6 normal deliveries No miscarriages

Blastocyst biopsy and PGS may be a less-invasive and more beneficial option to day-3 blastomere biopsy and PGS

Structural Chromosome Imbalances

Fluorescence in situ Hybridization (FISH)

Reciprocal translocations

Telomere clones

۲

۲

- Genetic balance
 - May have the translocation
- Breakpoint clones
 - No translocations

Robertsonian translocations

- Locus specific clones
- Genetic balance
 - May have the translocation

Structural Chromosome Disorder

Percentric inversions

- Telomere probes
- Identify duplication/deficient chromosomes in embryos

- Paracentric inversions
 - Centromere probes
 - Telomere probes
 - Identify dicentric chromosomes in embryos

Single Gene and Mitochondrial Disorders

- Single gene disorders
 - PCR
 - DNA sequencing
 - Linkage analysis

Mitochondrial

۲

- Recessive

Segregation Patterns

Single Gene and Mitochondrial Analyses Limitations

- Single Gene Disorder
 - Mutation must be known
 - Allele dropout misdiagnosis
- Mitochondrial Disorders
 - Few offered

New Technologies- Microarrays

Single nucleotide polymorphisms (SNPs)

- More dense
 - Various density arrays
 - Up to ~ 1,000,000 genomic hits

CGH

- Less dense
- Ratio
- Oligonucleotides or BACs
 - ~ 42,894 genomic hits
 - ~ Exonic (16404), Intronic (19805), Intergenic (6685)

What are SNPs?

5'-ACTGGGAATCCCGAAGTGTGT GATTACA-3'

- 1. Single Nucleotide Polymorphism
- 2. Normally occurring genetic variant
- 3. 10,000,000 estimated to be in human genome
- 4. Stable
- 5. Used in genetics research to tag genomic segments

SNP Arrays vs CGH Arrays

Genetic Diagnostics and Screening	SNP	CGH	Genetic Diagnostics and Screening	SNP	CGH
23/24 chromosome aneuploidy	X	X	Uni-parental disomy	X	
Copy number variations (CNVs)	X	X	Copy neutral event	X	
Structural chromosome imbalances	~1.5kb	~.1-10mb			
Genome-wide scans	X				
What embryo implanted?	X				
What partner provided the extra chromosome?	X				
Single gene disorders	X				
Mitochondrial mutations	X				

FISH vs Microarrays

FISH: hybridization of a long oligonucleotide to a peri-centromeric or locus specific location

- detection via microscopy
- analysis and interpretation via human

SNP or CGH: DNA markers throughout the chromosome

- CGH is a less dense array
 - detection via microarray and scanner
 - analysis and interpretation via algorithm

Correlate FISH and Microarray Analysis

• FISH

- Reported world-wide misdx is 6-11%
- Some have suggested that FISH has a ~ 50% mis-dx rate !!! NO NO NO
 - Based upon rehybridizing completed PGD cases
 - Estimations
 - FISH experience

Materials and Methods

 n = 565 single cells (565 blastomeres (61 day-3 abnormal embryos) and 34 cell lines

Embryo biopsy of a single cell – laser

- Blastomere

Modified whole genome amplification (WGA)

Experimental Problem to Overcome

Polymerase Chain Reaction (PCR)

----- Target ------

lem plate	
vleit DNA	
nneal Primers	
xtension	
Products	
	Template Melt DNA Anneal Primers Extension

~ 6 picograms DNA Need ~ 250,000 pg for microarray analysis

PCR

- Artifacts
- Amplification
- Allele dropout

Modified Whole Genome Amplification (WGA)

Home Brew

Parental DNA not required for PGS

Materials and Methods

 Invariant DNA genomic loci to ensure the entire genome was amplified

 TaqMan PCR to ensure heterozygous allele amplification

Illumina HumanHap370 ~370,000 SNPs

Materials and Methods

Two-channel intensity values – high-resolution copy-number profile

- Identify copy number variations (CNVs)
- Genome-wide scans
 - Modified DNA fingerprinting / genotyping
 - Embryo and parental DNA
 - Who provided the extra chromosome?
 - What embryo implanted?
- deCode genetics Disease Minor Professional, Illumina BeadStudio, GenomeStudio and KaryoStudio software

Microarray

Illumina Human HapMap370 ~370,000

Genomic Coverage on CGH Microarray

	≻	- 138	
	×	< 1803	
	22	828 • Intergenic [6673]	
	5	• Intronic [19594] • Exonic [16229]	
	20		
	19	2 2104	
Ĕ	18		
	17	2178	
0	16	2 1712	
ď	15		
č	4	1380	
	- 		
2	-		
C	÷		
\mathbf{O}	ę		
	თ		
	8		
	~		
	o 		
	цо		
	ч •		
	(7) (1)		2070
	-		2019
	-		<u>통</u> 4010
		వ్వభద్ద వ్వ వాగు గాగా గాగా గాగా గాగా గాగా గాగా గారా గార	

Results

 Preimplantation blastomeres (n=565 cells from 61 embryos) and cell lines (n=34)

- DNA yields of 700-800 ng / 4-16 hrs reaction
- In many cases, a genomic coverage > 98% (Range 30-98%)
 - Correlates with day-3 embryo quality
- Heterozygous allele detection rate > 90%

GenomeStudio - Genotyping - 660W_training_062909

<u>File Edit View Analysis Tools Window H</u>elp

🗋 🔄 🖬 🗀 🕍 🐽 🛛 🖓

Samples Table

📔 🖻 🖻 🛍 🛍 | 24 31 24 🖉 🖉 🌆 💷 🖉 🜆 🖉 🖉 🖉 🖉 🐨 🗠 Loci 🚍

Project	AMP_Plate	Scanner	Date_Sc an	Index	Sample ID	Call Rate	Gender	p05 Grn	p50 Grn	p95 Grn	p05 Red	p50 Red	p95 Red	p10 GC	p50 GC	Rep Error Rate	PC Error Rate	PPC Error Ra
Training	WG0023392-MSA1			1	Control 1	0.9994336	Female	974	14266	29896	803	9021	23456	0.7654	0.9042			
Training	WG0023392-M5A1			2	Control 2	0.9994497	Female	1435	18385	37541	1152	11065	27599	0.7654	0.9042			
Training	WG0023392-M5A1			3	Control 3	0.9994016	Female	917	14270	29659	763	9280	23641	0.7654	0.9042			
Training	WG0023392-M5A1			4	Control 4	0.9994123	Female	1337	16537	34928	1033	10009	25655	0.7654	0.9042			
Training	WG0023392-M5A1			5	Control 5	0.9993767	Female	944	14216	34041	813	9039	24273	0.7652	0.9042			
Training	WG0023392-MSA1			6	Blastomere 1-1	0.8455413	Female	1008	6443	37340	824	3751	25430	0.6702	0.8825			
Training	WG0023392-M5A1			7	Blastomere 1	0.5369339	Female	122	239	672	74	123	312	0.2574	0.7982			
Training	WG0023392-M5A1			8	NA11213	0.9993500	Female	1415	18327	35619	1143	11585	26377	0.7652	0.9042			

	ш
	-

Rows=8
Disp=8
Sel=0
Filter=Filter is not active.

Image: Contract of the second second

쯿 GenomeStudio - Ge...

< 🛃 🕪 8:40 AM

_ 0 <u>×</u>

 $\triangleleft \, \triangleright \, \mathbf{X}$

Results

۲

- Microarray detection rate > 90% (some cases > 99%)
 - (Range 30-98%)
 - Correlates with day-3 embryo quality
 - 30% detection rate still permitted aneuploidy detection

- Genotype call rate > 90% (some cases > 99%)
 - (Range 30-98%)
 - Correlates with day-3 embryo quality
 - 30% call rate still permitted aneuploidy detection

Aneuploidy Results

- 23-chromosome molecular karyotype was obtained from all 565 blastomeres and 34 cell lines
 - Blastomeres >25,000 individual chromosomes
 - Cell lines >1564 individual chromosomes

Three Copies of Chromosome 22

Three Copies of Chromosome 3 (Noise Due to Poor Embryo Quality)

Three Copies of Chromosome 12 One is Deleted from Band q14?

23-Chromosome Aneuploidy Results

61 embryos (day-3 PGS abnormal for 10chromosome FISH)

- 69% (42/61) = mosaic diploid / aneuploid
 - 2-7 Chromosomes
- 25% (15/61) = mosaic aneuploid
 - 3-9 Chromosomes
- 7% (4/61) = complex mosaic
 - 3-13 Chromosomes

Results

- Structural chromosome imbalances were identified from all 9 cytogenetically abnormal cell lines
 - del(8q), add(17p), del(17p), add(4q), add(9p), add(14q), dup(18p), dic(5), del(12p) and del(9p)
 - Based upon the density of the SNP microarray
 - CGH array couldn't identify genetic imbalances

Copy Number Variations

 A high-resolution copy-number map identified CNVs in all 61 embryos and cell lines

Inheritable

Segmental deletions

Duplications

Copy Number Variations > chr2:1220484..5570289 Back Ŧ Home < + chr ↑ 5.5 ▼ jchr2 jchr2 chr2 jchr2 jchr2 chr2 jchr2 jchr2 3.000.000 3.500.000 CNP (MRGZHMF [416,WG0003157-DNAD07]) 1.500.000 2.000.000 2.500.000 4.000.000 4.500.000 5.000.000 _4.0 _3.0 . . from summer and the والمالح أنحاذها والموالية الموالية والمراجع فالمراجع والمراجع والمواجب المستوية والمحر المستنبية ويتح مهامهم a the second <u>CNP (LUEFMLQ [</u>565,WG0003159-DNAG02]) _4.0 3.0 former and the de الجنهانة والمعادية والمعادية والمتحار والمتحا المحادثين والمتعاد والمحافظ and a second and the second **با هير.** 1.0 ____ known Genes from UCSC ₩ **₩₩₩**₩ *** -----₩₩ **∦**k

Genomewide Scans / Molecular Genetic Sequences

- Beckwith-Wiedmann Syndrome
- Some forms of Prader Willi / Angelman Syndrome
- DiGeorge Syndrome
- Some forms of Autism
- Uniparental Disomy
- Single Gene Disorders
- etc

DiGeorge Syndrome

Wilm's Tumor

– Who provided the extra chromosome?

Conclusions

Chromosomes

- Complete molecular karyotype for all 23/24-pairs of chromosomes
- Genetic imbalances due to reciprocal or Robertsonian translocations, pericentric and / or paracentric inversions
- Duplications (i.e Charcot-Marie-Tooth, type 1A)
- Microdeletion syndromes (i.e. DiGeorge syndrome)
- Using modified microarray and FISH, identify cryptic sub-telomeric rearrangements

Conclusions

- Using Genome-wide scans and modified DNA fingerprinting / genotyping
 - What partner provided the extra chromosome?
 - What embryo implanted?
 - Select best embryo for elective single embryo transfer (eSET)

Conclusions

- Genome wide scans / Molecular Genetic Sequences
 - Complex genetic disorders
 - Single gene disorders

Conclusions – SNP Microarrays

 Analyze polar bodies, blastomeres or trophectoderm cells

Laboratory and Clinical Collaborators

Shady Grove Center for Preimplantation Genetics and Shady Grove Fertility Reproductive Science Center

- Rasmei Pen
- Andy Benner
- Adam Kittai
- Andrew Siegel
- Eric Widra
- Richard Leach
- William G Kearns

Contact Information

- William G. Kearns
 - 301-545-1260
 - william.kearns@integramed.com