

Organisation of the PGD laboratory and the need for accreditation

Joyce Harper Chair of the ESHRE PGD Consortium UCL Centre for PGD

Summary

- Organisation of a PGD Centre
 - Different ways • The need for a successful IVF unit
 - Needs of the patient
 - Biopsy
 - Pretreatment workup
 - Clinical cycle
 - Misdiagnosis
- The need for accreditation
- ISO • CPA

Seshre

Setting up a PGD centre

- Two ways
- IVF centre and PGD centre in the same institute preferred
- Transport PGD

Organisation of the PGD Centre

- Highly successful IVF unit
- Patients need genetic and specific PGD counselling
- Biopsy performed by trained embryologist
- Diagnosis performed by molecular biologist/cytogeneticist
- Accredited lab
- Patient information leaflets and consents
- Excellent communication between IVF centre and diagnosis lab
- Join the PGD Consortium

Seshre

Successful IVF Unit

- No point doing PGD in an IVF unit with poor results
- Biopsy
- Selecting embryos on genetic and chromosomal status
- Morphology rarely taken into consideration

Deshre

Evaluation of the patient

- Full report from genetics centre
- IVF and PGD specific information
- Standard IVF workup confirm patients diagnosis
- Competent at embryo biopsy
- Suitable diagnostic workup
 - FISHPCR
 - PCR

Pretreatment workup

• FISH

- Sexing need to check for polymorphisms
- Translocations protocols developed by cytogeneticist
- For PGS polymorphic sites

• PCR

- Confirmation of mutation on proband and relatives
- Suitable informative markers to detect contamination
- Experienced molecular biologist

FISH

- Sexing for X linked disease
 - Ensure X and Y probes in first round
- Chromosome abnormalities
 - Suitable probes to detect all viable arrangements
 - 2 cells if only 1 informative probe
- PGS
 - 13, 14, 15, 16, 18, 21, 22, X and Y

FISH

- All probe combinations optimised on lymphocytes and patients DNA checked
- Metaphases (10) and interphase nuclei (100)
- Might need to also check on blastomeres
- Polymorphisms need to be known
- Who spreads the cells? • Different methods

Seshre

PCR

- X-linked disease
 - Sexing only
 - Identification of mutation (specific diagnosis)
- Monogenic disorders
 - Monogenic
 - Triplet repeats

• HLA

Seshre

PCR ICSI • Tubing cells - who does it? • Separate rooms for PCR and analysis Informative markers Contamination Allele dropout Workup including single cells Heterozygous sample to check ADO (50 cells) • ADO <10%

- Amplification efficiency > 90%
- Assessing blanks

Clinical cycle

- Full consultation, information leaflets, relevant consents
- Need good number oocytes/embryos
- · Patients must not have unprotected sex
- All cumulus cells removed (maternal contamination)
- ICSI for all molecular diagnosis (paternal contamination)
- · Medium to support blastocyst growth
- Clear identification of biopsied cell and embryo number
- Ensure correct embryo transferred

Seshre

Misdiagnosis

- Analysis of untransferred embryos
- Prenatal diagnosis
- · Follow up of pregnant patients
- · Follow up of babies born
- The causes of misdiagnosis and adverse outcomes in PGD
- Wilton, L, Thornhill, A, Traeger-Synodinos, J, Sermon, KD, Harper, JC
- Submitted to Human Reproduction

Possible causes of misdiagnosis

- PCR
- Allele dropout
- Contamination sperm/cumulus/DNA/cells
- Mosaicism
- Transferring wrong embryo
 Unprotected sex

• FISH

- Contamination cumulus
- Mosaicism
- Transferring wrong embryo
- Unprotected sex

Monogenics		
Myotonic dystrophy type 1	PND	TOP
SMA	Post	Born
ß-thalassemia	PND	TOP
ß-thalassemia	PND	TOP
Familial amyloid polyneuropathy	PND	Born
Cystic fibrosis	PND	Born
Cystic fibrosis (1 of twins)	Post	Born
CMT1A	PND	Born
CMT1A (twins)	PND	TOP of both twins
Fragile X	PND	Born
Sexing for X-linked disease		
46,XY in retinitis pigmentosa	PND	Born
46,XY in Duchenne muscular dystrophy twin	PND	TOP of one twin

Sexing for X linked disease		
15,XO Haemophilia A	PND	TOP
46,XY Haemophilia A	Post	Born
46,XY Retinitis Pigmentosa (twins)	Post	Born
Franslocations		
T13 after 45,XY,der(13;14)(q10;q10)	Mis	Mis
17,XX,+der(22)t(11;22)(q23.3;q11.2)	PND	TOP
46,XY,der(15)t(13;15)(q25.1;q26.3)pat	PND	TOP

Cumulative data I-I)	(: FISH n	nisdiagnosis (2)
Cumulative data i h		
PGS		
T16 after 1st PB biopsy only	Mis	Mis
T16 after 1st PB biopsy only	Mis	Mis
47,XX,+16	Mis	Mis
47,??,+16	Mis	Mis
47,XX,+21	Post	Born
47,XXX	PND	Lost to follow-up
46,XY/47,XY,+18	PND	TOP
47,XY,+21	PND	ТОР
Social Sexing		
Requested male but female foetus	PND	TOP
		Seshre
		european society of human reproduction & embryology

Key points for biopsy/diagnosis lab

- Counselling
- · Appropriately trained staff
- ISO/accreditation
- Aware of misdiagnosis possibilities
- Quality control
- Records

Seshre

The need for accreditation

- Excellent quality management
- Clear lines of communication
- Clear lines of reporting
- Continued professional development

Seshre

References from International Organiziation for Standarization ISO 15189:2007 Medical Laboratories Particular requirements for quality and competence

- ISO/IEC 17025:2005
 General requirements for the competence of testing and calibration labs
- ISO 9001:2000
- Quality Management systems
 Requirements
- ISO 9000:2005
 Quality Management systems
 Fundamentals and vocabulary

- ISO 22870:2006
 Point of care testing (POCT)
 Requirements for Quality and competence

Laboratory accreditation in the UK

- Clinical Pathology Accreditation (UK) Ltd
- Clear route for diagnostic laboratories
- ISO 15189:2007
- Nothing specific for PGD

Seshre

Accreditation for diagnostic lab

- ISO 15189
- CPA The standards
 - A. Organisation and quality management system
 - B. Personnel
 - C. Premises and environment
 - D. Equipment, information systems & materials
 - E. Pre examination process
 - F. Examination process
 - G. Post examination phase
 - H. Evaluation and quality assurance

A. Organisation and quality management system

- quality manager
- quality manual
- quality policy
- quality management system
- document control
- record control
- sample control

B. Personnel

- professional direction
- staff orientation and induction
- job title and description
- contracts, terms and conditions
- line management and accountability
- education and continual professional development
- records of absence, accidents, occupational health, disciplinary action
- staff meetings and annual reviews

Deshre

C. Premises and environment

- · facilities for staff
- · patients
- storage
- · health and safety

Deshre

D. Equipment, information systems & materials

- · procurement of equipment
- management of data and information
- all equipment needs to be regularly maintained
 - service contractsdata of regular care, etc.
 - -----, ·
- consumables
- need to log batch numbersdate of order/arrival/use/location
- primers and probes
- same as consumables

Ε. Pre examination process

- · information for users and patients
- specimen collection
- handling
- transportation
- reception
- storage
- · referral to other labs

Seshre

F. **Examination process**

- selection and validation of examination procedures
- clinical relevance, purpose of exam, specimen requirements and means of identification
- equipment and special supplies
- · reagents, standard or calibrantes and internal control materials
- instructions for performance of the examination
 limitations of the examinations
 recording and calculation of results
- internal quality control procedures and criteria against which examination processes are judged, reporting reference limits
- responsibilities of personnel in authorising, reporting and monitoring reports
- · hazards and safety precautions
- · assuring the quality of examinations

Post examination phase G.

- · reporting results
- the report
- · the telephoned report
- · the amended report
- · clinical advice and interpretation

H. Evaluation and quality assurance

- evaluation and improvement processes
- · assessment of user satisfaction and complaints
- internal audit of quality management system
- internal audit of examination processes
- external quality assessment
- status of preventive, corrective and improvement actions

Deshre

Quality assurance

- Staff need adequate training
- Ongoing assessment
- Explicit protocols

Seshre

External quality assessment (EQA) FISH

Working with

- Cytogenetics European Quality Assessment scheme (CEQA)
- Ros Hastings, Alan Thornhill, Sjoerd Repping, Joyce Harper
 Online registration closed
 - Stage 1 Send in a case which gets assessed
 - Stage 2 Test on various on line cases

EQA PCR

- Working with
 - UK National External Quality Assessment Scheme (UKNEQAS) for Molecular Genetics
- Zandra Deans, Sioban SenGupta, Martine De Rycke Francesco Fiorentino, Gary Harton, Céline Moutou, Pamela Renwick, David Robinson, Jan Traeger-Synodinos
 - Pilot study EQA for CF
 - Stage 1
 - DNA from 'parental cell lines' sent to labs
 Labs test DNA and return feasibility report
- Stage 2
 - Tubed single cells from 'offspring cell lines' sent to labs
 Labs test and return diagnostic report

Seshre

Pregnancy and baby follow up

- Retrospective study Alison Lashwood
- Postal questionnaire for parents
- Part 1 centre; complete basic details
- Part 2 patients; reproductive history, pregnancy, birth
- Part 3 patients; growth and development
- Part 4 patients; history of the patients
- Prospective study?

Limitations of PGD

- Patients have to go through IVF
- Cost
- All embryos may be affected
- Making diagnosis from 1-2 cells
- Have been misdiagnosis
- · Success rate lower than IVF

Consortium working groups

- Diagnostic laboratory accreditation: Chair Katerina Vesela
- Misdiagnosis: Chair Joanne Traeger-Synodinos
- Aneuploidy screening: Chair Sjoerd Repping
- Database: Chair Celine Moutou

Seshre

Consortium training

- Biopsy and FISH workshop: Prague, 2006
- Basic genetics for ART practitioners:
 - Brussels, 2006
 - London, 2007Athens, 2008
- Biopsy trouble shooting day: Lyon 2007

Interface between ART and Genetics

- Joint project between ESHRE and ESHG
- Document and guidelines on interface between ART and genetics:
 - Editorial: Kääriäinen, H., (2006), Eur. J. Hum. Genet, 14, 505
 Document: Soini et al., (2006), Eur. J. Hum. Genet, 588-645
 Recommendations: Eur. J. Hum. Genet, 2006, 14, 509-511
- On PGD, genetic screening in gamete donors, etc...

Seshre

What makes a good PGD centre?

COMMUNICATION

Excellent IVF Platform

Excellent Diagnostics Laboratory

Integration of Services

Rigorous Quality Control/Quality Assurance

Commitment to Follow-up

Comprehensive Ethical Review

TRANSPORT PGD

	1 to 10 cycles	11 to 100 cycles	>100 cycles
N° of centres	6	30	3
N° of cycles	31	1327	2001
N° of pregnancies	5	296	49
% pregnancies	16 %	22 %	25 %

Consortium web site - www.eshre.com

- PGD consortium members and the treatments they offer
- Summary of our activities
- Recommended reading
- Publications of the consortium
- Guidelines
- Newsletters
- Training and education
- Cumulative tables of results
- PGD mail
- Patient support groupStatutes
- How to become a member