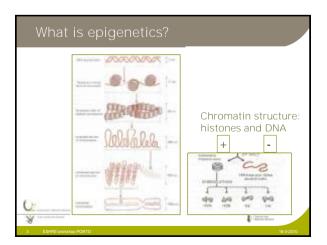
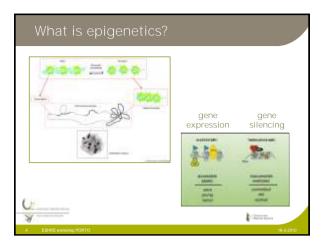
Clinical epigenetics and its relation to ART

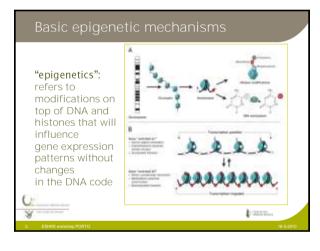
Martine De Rycke Martine.Derycke@uzbrussel.be

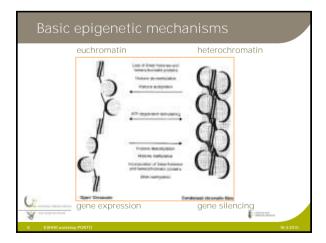

Viewerlan Determine Road

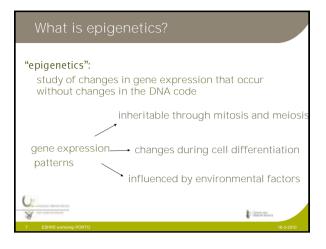
Distant and Distant first and

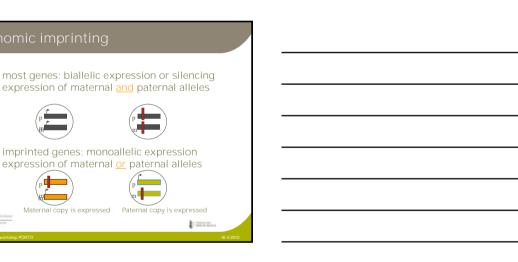

100000...

Epigenetics and ART

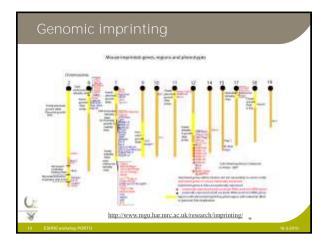

- Basics of epigenetics
- Genomic imprinting
- Human imprinting disorders
- Review data on imprinting disorders in ART children







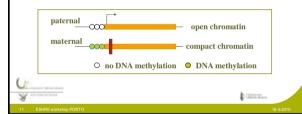
, **d**

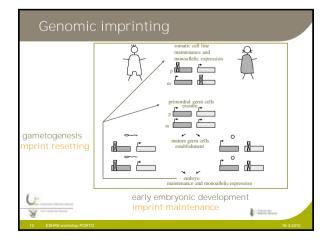

Maternal copy is expressed

- > 80 imprinted genes (0.1-1% of all genes)
- Eutherian mammals, marsupials, higher plants
- Key role in embryonic growth and placental function, cognition and maternal behaviour

n 🛉

- Growth regulation: paternally expressed genes enhance growth, maternally expressed genes repress growth
- Defective imprinting involved in carcinogenesis and in human genetic diseases


Distant....



Genomic imprinting

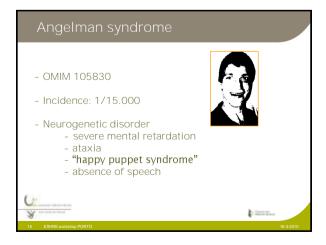
- Imprint Control Regions (ICR) control imprinting of the clusters
- Maternal and paternal alleles carry different epigenetic modifications ("imprints")

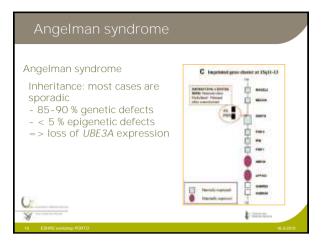
Epigenetics and AR1

Does ART interfere with

- epigenetic reprogramming (imprint maintenance) in the early embryo?
- epigenetic reprogramming (imprint resetting) during gametogenesis?

Epigenetics and ART

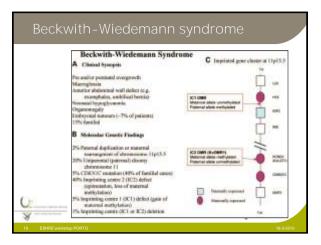

Recent studies have presented (limited) evidence for a higher risk of imprinting disorders after ART


b interven

b interven

Imprinting disorders: altered expression of imprinted genes

- epigenetic mechanisms
- genetic mechanisms (large duplications or deletions, mutations in imprinted genes and ICRs, uniparental disomy)



nd AS			
# cases	ART	country	reference
2	ICSI	Germany	Cox et al., 2002
1	ICSI	Norway	Orstavik et al., 200
	# cases	# cases ART 2 ICSI	# cases ART country 2 ICSI Germany

Si.

Distant...

ART and BWS

	ART/ cohort	study	#LOM/ #tested		RR	country	reference
	4 3/65*	retro. prosp.	5/6	5/2	х 6	USA	DeBaun et al., 2003
	6/149	retro.	2/2	3/3	× 4	UK	Maher et al., 2003
	6/149	retro.	6/6	2/4	х З	France	Gicquel et al., 2003
	4/37	retro. case-cor	3/3 htr.	1/3	x 9	Australia	Halliday et al., 2004
		retro.	24/25	13/12	-	UK	Lim et al., 2009
	11/79	retro.	8/8	5/1/5H	Т	UK	Sutcliffe et al., 2006
U.		RR – rela LOM – lo	itive risk; H iss of mater	F – hormo nal methyl	nal treatm ation * o	ent verlapping pat	tients of an and a second

ART and BWS

Si/

Association between ART and BWS to be considered

- →epidemiological data
- →molecular analysis: an epigenetic defect (loss of maternal methylation at BWSIC2) in <u>nearly all</u> <u>BWS patients after ART</u>
- →general population: epigenetic defect in 50-60% of cases

Distant...

ART and imprinting disorders

- Insufficient evidence for association between ART and other imprinting disorders (SR, PWS, global hypomethylation syndrome, RB)
- limited evidence for association between ART and AS and BWS
- absolute risk is low

Cause of imprinting disorders after

* in-vitro culture systems

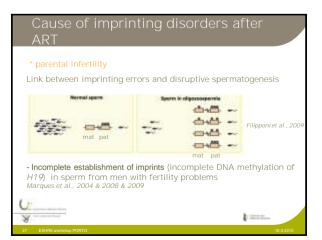
- Khosla et al. 2001: culture (serum) of preimplantation mouse embryos reduced fetal development (lower birthweight) and expression of imprinted genes
- Young et al. 1998: after exposure *in vitro* unusually large offspring syndrome (LOS) in relation with imprinted genes
 Young et al. 2000: origonatic changes in *ICE2P* are
- Young et al. 2000: epigenetic changes in *IGF2R* are associated with fetal overgrowth (LOS) after sheep embryo culture

The mammalian preimplantation embryo is very sensitive to culture conditions; epigenetic changes induced at the early stages may lead to altered phenotypes at later stages

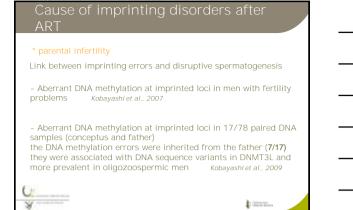
b latera...

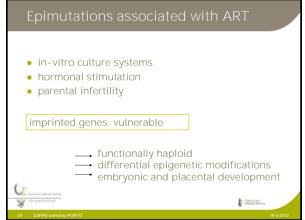
Distant....

Cause of imprinting disorders after ART


* use of hormonal ovarian stimulation

- mouse: comparison of methylation in 4 imprinted genes in normal vs superovulated GVs: no differences for maternally methyl. genes, but gain of methylation for H19 after superovulation Sato et al, 2007
- human: superovulated GV & MI oocytes show gain of H19 methylation (2/6) and loss of maternal methylation at PEG1 (6/16) Sato et al, 2007
- human: methylation analysis of KvDMR1 in GV, MI & MII superovulated oocytes shows loss of methylation in 1/16 oocytes Geuns et al., 2007


lation botu	waan ADT fastility problem
	veen ART, fertility problem WS, PWS patients)
. 220 / 10/ 0	ino, i no pationo,
cohort	general population
6.4%	2.1%
6.8%	3.5%
t	t 220 AS, B cohort 6.4%




Cause of imprinting ART	g disorders after	
* parental infertility subfertile couples are predispose imprinting defects and subfertilit		
- AS cohort study: subfertile cou increased risk of conceiving a ch TTP> 2 years, no therapy RR TTP> 2 years, treatment RR	ild with an imprinting defect 6.25	
26 ESHRE workstop PCRTD	👔 (data mar) 165-22	510

Iceberg theory

- <u>No higher risk of childhood cancer</u>
 Doyle et al. 1998, (UK n= 2057), Bruinsma et al. 2000, (Australia, n = 5249), Klip et al. 2001, (the Netherlands, n = 9484), Lerner-Geva et al. 2000, (Israel n = 332)
- Lidegaard et al., 2005:
 - → systematic follow up of 6052 ART singletons (1995-2001) till 2002 vs a control group of 442.349 non-ART
 - → the incidence rate of childhood cancer, mental diseases, imprinting syndromes and developmental disturbances was equal in the two groups

b interven

b interven

Iceberg theory

- Ceelen et al., 2008: follow-up of IVF children vs controls born to subfertile couples
 →IVF children show higher blood pressure levels
- ART is associated with an increased incidence of Low Birth weight maybe as a consequence of embryonic/fetal
- epigenetic programming in response to early adverse environmental factors and stress???

ESHRE workshop PORTO

Iceberg theory

- *Katari et al., 2009:* changes in DNA methylation and gene expression patterns of imprinted and non-imprinted genes in cord blood and placenta of ART children (n=10) versus spontaneously conceived children (n = 13)
 - -> phenotype?
 -> long term: increased risk for metabolic and cardiovascular diseases?

Conclusion and perspectives

- Epidemiological data: increased relative risk for AS and BWS after ART but absolute risk is low
- need for long-term follow up
- Prospective multi-centre studies and record data on infertility history, hormonal stimulation, *in vitro* culture conditions
- Need for basic epigenetic and imprinting research
 → in animal models
 - → human gametes and embryos

C-	
X	D Generalis
34 ESHRE workshop PORTO	16-3-2010

