

Basic Genetics for ART Practitioners

ESHRE Campus 2010 Porto, Portugal, 16 April 2010 Organised by the ESHRE Special Interest Group "Reproductive Genetics"

Heredity and Genetics

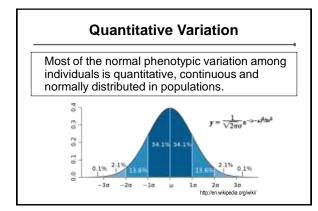
 <u>Heredity</u>: the transmission of characteristics of parents to offspring.

The Living Webster Encyclopedic Dictionary of the English Language. The English Language Institute of America, Inc., 1972.

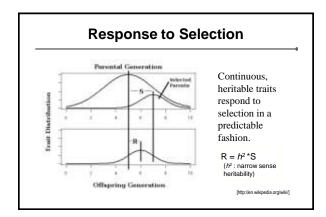
 <u>Genetics</u>: the scientific study of the principles of heredity and the variation of inherited traits among

related organisms.

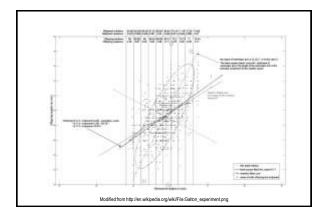
The American Heritage® Science Dictionary. Houghton Mifflin Company, 2005.


Unity and Diversity

- Biological systems show remarkable unity at the molecular and cellular levels, reflecting their common ancestry.
- Variations on this unity lead to the extraordinary diversity of individual organisms.


The scientific analysis of heredity deals with the explanation of two major paradigms of life:

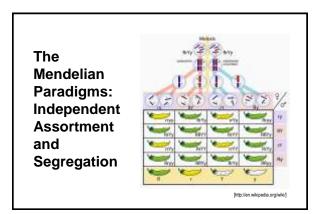
- the unity of species
- the **diversity** of individuals.

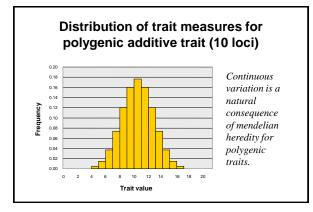

Classes of Phenotypes and Historical Aspects

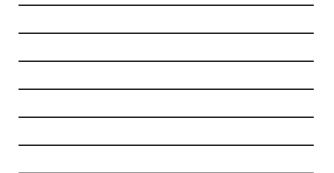
Galton's Ancestral Law of Heredity "...the total heritage of the offspring is derived as follows. The two parents between them, contribute on the average one half of each inherited faculty, each of or each inherited faculty, each of them contributing one quarter of it. The four grandparents contribute between them one quarter, or each of the sum of the series 1/2 + 1/4 + 1/8 + 1/16 + &c, being equal to 1..." П Francis Galton. A diagram of heredity. Nature 1898;57:293. © Electronic Scholarly Publishing Project, 1996.

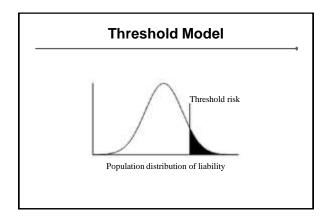
Dimorphic Features of Garden Peas

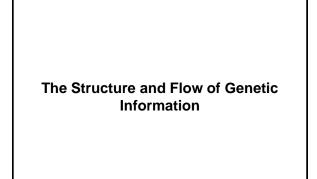
Plant structure	trait	trait ph		
ipe seeds	surface	round	wrinkled	
eed interiors	colour	yellow	green	
etals	colour	purple	white	
unripe pods	colour	green	yellow	
pe pods	colour	inflated	pinched	
owers	position	axial	terminal	
tems	length	long	short	

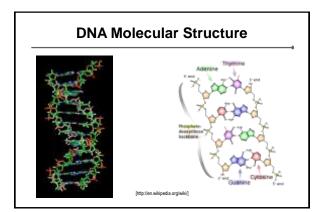


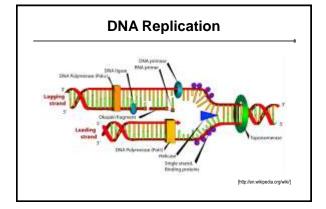

Mendel's	experiments	data
----------	-------------	------


Parental phenotype	F1	F ₂	F ₂ ratio
Round x wrinkled seeds	all Round	5474 Round : 1850 wrinkled	2.96:1
Yellow x green seeds	all Yellow	6022 Yellow: 2001 green	3.01:1
Purple x white petals	all Purple	705 Purple : 224 white	3.15:1
Inflated x pinched pods	all Inflated	882 Inflated : 299 pinched	2.95:1
Green x yellow pods	all Green	428 Green : 152 yellow	2.82:1
Axial x terminal flowers	all Axial	651 Axial : 207 terminal	3.14:1
Long x short stems	all Long	787 Long : 277 short	2.84:1

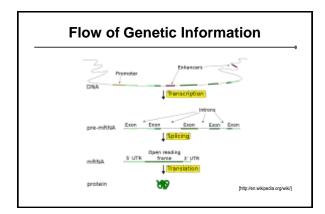

The Mendelian Paradigms

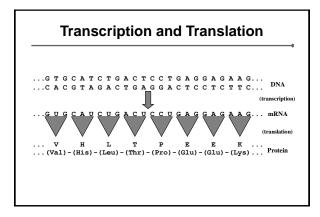

- The inheritance of each trait is determined by "units" or "factors" that are passed on to descendants unchanged.
- An individual inherits one such "unit" from each parent for each trait.
- A trait may not show up in an individual but can still be passed on to the next generation.




Human Genome: physical parameters

- number of base pairs
- total linear length
- (rotation $360^{\circ} / 10 \text{ bp}$) = $3.4 \times 10^{-9} \text{ m}$
- width of the DNA molecule 2×10^{-9} m
- DNA mass per cell
- total number of genes
- gene size


2.9 x 10⁹ bp - number of chromosomes 22 pairs of autosomes, plus XX or XY ± 2 m 7.1 x 10⁻¹² g 25 000 - 30 000 genes 1 000 - 200 000 bp (typical: 30.000 bp) mitochondrial genome 16 569 bp, 37 genes, no introns



The Genetic Code					
	U	С	Α	G	
U	Phe (F)	Ser (S)	Tyr (Y)	Cys (C)	U
	Phe (F)	Ser (S)	Tyr (Y)	Cys (C)	C
	Leu (L)	Ser (S)	Stop	Stop	A
	Leu (L)	Ser (S)	Stop	Trp (W)	G
С	Leu (L)	Pro (P)	His (H)	Arg (R)	U
	Leu (L)	Pro (P)	His (H)	Arg (R)	C
	Leu (L)	Pro (P)	Gln (Q)	Arg (R)	A
	Leu (L)	Pro (P)	Gln (Q)	Arg (R)	G
A	lle (I)	Thr (T)	Asn (N)	Ser (S)	U
	lle (I)	Thr (T)	Asn (N)	Ser (S)	C
	lle (I)	Thr (T)	Lys (K)	Arg (R)	A
	Start / Met (M)	Thr (T)	Lys (K)	Arg (R)	G
G	Val (V)	Ala (A)	Asp (D)	Gly (G)	U
	Val (V)	Ala (A)	Asp (D)	Gly (G)	C
	Val (V)	Ala (A)	Glu (E)	Gly (G)	A
	Val (V)	Ala (A)	Glu (E)	Gly (G)	G

Genetic Variation of the Human Genome

The spectrum of variation in the human genome

Variation	Rearrangement type	Size range
Single base-pair changes	Single nucleotide variants, point mutations.	1 bp
Small insertions/deletions	Binary insertion/deletion events of short sequences (majority <10 bp in size).	1-50 bp
Short tandem repeats	Microsatellites and other simple repeats.	1-500 bp
Fine-scale structural variation	Deletions, duplications, tandem repeats, inversions.	50 bp to 5 kb
Retroelement insertions	SINEs, LINEs, LTRs, ERVs.	300 bp to 10 kb
Intermediate-scale structural variation	Deletions, duplications, tandem repeats, inversions.	5 kb to 50 kb
Large-scale structural variation	Deletions, duplications, large tandem repeats, inversions.	50 kb to 5 Mb
Chromosomal	Euchromatic variants, large cytogenetically visible deletions, duplications, translocations, inversions and aneuploidy.	~5 Mb to entire chromosomes

Molecular Variation

Single nucleotide polymorphisms/variants

- make up ~90% of all human genetic variation
- occur every 100 to 300 bp; total >10 millions SNPs
- 2/3 involve the replacement of cytosine with thymine (C>T)

Copy number polymorphisms/variants

- copy number change involving a DNA fragment that is ~1 kb or larger
- 1,447 copy number variable regions identified in the human genome
- cover 360 Mb (12% of the genome)
- ~0.4% of the genomes of unrelated people typically differ with respect to copy number

Polymorphisms are variations observed in >1% of the population.

Chromosomal Heteromorphisms

• prominent short arms of acrocentric chromosomes (13, 14, 15, 21, 22) -satellites, double satellites, stalks, double stalks

• pericentric inversions -inv(2)(p11.2q13) -inv(9)(p12q13) -inv(Y)(p11.2q11.2)

•variation in size (qh+, qh-) of heterochromatic regions of chromosomes 1, 9, 16, and Y

Classification and Mechanisms of Genetic Diseases

Classification of Genetic Diseases

- resulting from germinal mutation/variation
 - chromosomal
 - single gene (mendelian; mitochondrial; etc.)
 - multiple genes (multifactorial; polygenic)
- · resulting from somatic mutation
- resulting from interactions between germinal and somatic mutations

Adapted from McKusick VA: The Morbid Anatomy of the Human Genome. Medicine 1986; 65:1-33.

Single Gene Patterns of Inheritance

- mendelian
 - autosomal dominant
 - autosomal recessive
 - X-linked (dominant; recessive)
 - Y-linked
- mitochondrial
- · triplet repeat amplification

Types of Mutations

- Human Gene Mutation Database®
 - Missense/nonsense

 - Splicing
 Regulatory
 Small deletions
 - Small insertions
 - Small indels
 - Gross deletions
 - Gross insertions - Complex rearrangements
 - Repeat variations

[http://www.hgmd.cf.ac.uk/ac/index.php]

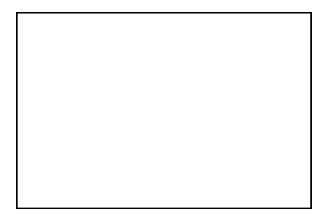
Mechanisms of Dominance

- Molecular classification
 - haploinsufficiency
 - increased gene dosage
 - increased / ectopic mRNA expression
 - increased / constitutive protein activity
 - dominant negative
 - structural function
 - toxic protein
 - new protein

Wilkie AOM: The molecular basis of genetic dominance. J Med Genet 1994; 31:89-98.

Atypical Patterns of Inheritance

Inheritance pattern	Genetic mechanism	Disease example	Result or effect on the phenotype
Modifier gene	A second gene at a different locus may modify phenotype	Cystic Fibrosis	Modification of extent of lung disease, response to infection
Digenic inheritance	An inheritance mechanism resulting from the interaction of 2 nonhomologous genes	Deafness	Modification of the severity of deafness
Triallelic inheritance	Three mutations from genes at different loci segregate with expression of the disease	Bardet-Biedl syndrome	Mutations in a second locus affect inheritance pattern
Imprinting/opposite transcripts	A phenomenon whereby genes are differentially expressed according to parental origin	Beckwith- Wiedemann syndrome	Parent-specific patterns of inheritance



	ALBOWERS.	Lastel	Linkol	NESCENTION	
 Ume onlyknown sequence 	12572	089	- 43	22	13943
 Gene with learwa sequence and phonotype 	522	11		1	240
 Plintotype description, molecular hosts known 	2000	212	4	24	212
 Matchilan plarnetype or locus, molecular bosis malajown 	1018	141	2		1794
Other, aucusty plicastypes with suspected namelalize backy	1008	125	-		1331
Tetal	Listia	1122	22	43	19915

OMIM	Statis	tics f	or Ma	arch 1	0, 2010
Syno	psis o	f the i	tuma	n Geo	e Map
Cla	Loc	Chr.	Loci	Chr.	Loci
1	1214	2	465	17	718
2	779	10	452	18	176
3	655	11	174	19	780
4	470	12	650	20	310
1	510	12	224	21	143
2	137	14	181	22	306
1	544	15	767	X	695

