

The ESHRE view on PGS

Joep Geraedts

Chairman ESHRE Task Force PGS

I have no commercial and/or financial relationships with manufacturers of pharmaceuticals, laboratory supplies and/or medical devices.

PGD: ART used for genetic reasons

PGS: Genetic screening used to improve ART results

Different aims

- PGD aims at having a healthy child
- ART (and PGS) aim at having a child

UNESCO, 2003

ESHRE PGD Consortium Steering Committee

1997

ESHRE PGD Consortium - Aims

- To survey the availability of PGD
- To collect prospectively and retrospectively data on the accuracy, reliability and effectiveness of PGD
- To initiate follow-up studies of pregnancies and children born
- To produce guidelines and recommended PGD protocols
- To formulate a consensus on the use of PGD
- To educate in the science of genetics and reproduction

Data Collection – 13 years

- 1. ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium (1999). Preliminary assessment of data from January 1997 to September 1998 ESHRE PGD Consortium Steering Committee. Human Reproduction, 14: 3138-3148.
- 2. ESHRE PGD Consortium Steering Committee (2000) ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium: data collection II (May 2000). Hum. Reprod. 15, 2673-2683.
- 3. ESHRE PGD Consortium Steering Committee (2002) ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium: data collection III (May 2001), Hum Reprod., 17, 233-246.
- 4. Sermon, K., Moutou, C., Harper, J., Geraedts, J., Scriven, P., Wilton, L., Magli, M.-C., Michiels A, Viville, S., De Die, C. (2005) ESHRE PGD Consortium data collection IV: May-December 2001, Human Reproduction, 20(1):19-34.
- Harper, J.C, Boelaert, K, Geraedts, J., Harton, G., Kearns, WG, Moutou, C., Muntjewerff, N., Repping, S, SenGupta, S, Scriven, P.N., Traeger-Synodinos, J, Vesela, K, Wilton, L, Sermon, K.D. (2006) ESHRE PGD Consortium data collection V: Cycles from January to December 2002 with pregnancy follow-up to October 2003, Human Reproduction, 21, 3-21
- 6. Sermon, K.D, Michiels, A, Harton, G, Moutou, C, Repping, S, Scriven, P.N, SenGupta, S, Traeger-Synodinos, J, Vesela, K, Viville, S, Wilton, L, Harper, J.C (2007) ESHRE PGD Consortium data collection VI: Cycles from January to December 2003 with pregnancy follow-up to October 2004, Hum Reprod. 22(2):323-36
- 7. Harper, JC, De Die, C, Goosens, V, Harton, G, Moutou, C, Repping, S, Scriven, P., SenGupta, S., Traeger-Synodinos, J., Viville, S., Wilton, L., Sermon, K.D. (2007) ESHRE PGD Consortium data collection VII Cycles from January to December 2004 with pregnancy follow-up to October 2005. Hum Reprod
- 8. Goossens, V, Harton, G, Moutou, C, Scriven, PN, Traeger-Synodinos. J, Sermon, K, Harper, JC (2008) ESHRE PGD Consortium data collection VIII: Cycles from January to December 2005 with pregnancy follow-up to October 2006, Human Reproduction, 23(12):2629-45.
- 9. Goossens, V, Harton, G, Moutou, C, Traeger-Synodinos, J, Van Rij, M and Harper, JC (2009) ESHRE PGD Consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007

www.eshre.com

Data Collection – 13 years

- ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium (1999). Preliminary assessment of data from January 1997 to September 1998 ESHRE PGD Consortium Steering Committee. Human Reproduction, 14: 3138-3148.
- ESHRE PGD Consortium Steering Committee (2000) ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium: data collection II (May 2000). Hum. Reprod. 15, 2673-2683.
- ESHRE PGD Consortium Steering Committee (2002) ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium: data collection III (May 2001), Hum Reprod., 17, 233-246.
- Sermon, K., Moutou, C., Harper, J., Geraedts, J., Scriven, P., Wilton, L., Magli, M.-C., Michiels A, Viville, S., De Die, C. (2005) ESHRE PGD Consortium data collection IV: May-December 2001, Human Reproduction, 20(1):19-34.
- Harper, J.C, Boelaert, K, Geraedts, J., Harton, G., Kearns, WG, Moutou, C., Muntjewerff, N., Repping, S, SenGupta, S, Scriven, P.N., Traeger-Synodinos, J, Vesela, K, Wilton, L, Sermon, K.D. (2006) ESHRE PGD Consortium data collection V: Cycles from January to December 2002 with pregnancy follow-up to October 2003, Human Reproduction, 21, 3-21
- Sermon, K.D, Michiels, A, Harton, G, Moutou, C, Repping, S, Scriven, P.N, SenGupta, S, Traeger-Synodinos, J, Vesela, K, Viville, S, Wilton, L, Harper, J.C (2007) ESHRE PGD Consortium data collection VI: Cycles from January to December 2003 with pregnancy follow-up to October 2004, Hum Reprod. 22(2):323-36
- Harper, JC, De Die, C, Goosens, V, Harton, G, Moutou, C, Repping, S, Scriven, P., SenGupta, S., Traeger-Synodinos, J., Viville, S., Wilton, L., Sermon, K.D. (2007) ESHRE PGD Consortium data collection VII Cycles from January to December 2004 with pregnancy follow-up to October 2005. Hum Reprod
- Goossens, V, Harton, G, Moutou, C, Scriven, PN, Traeger-Synodinos. J, Sermon, K, Harper, JC (2008) ESHRE PGD Consortium data collection VIII: Cycles from January to December 2005 with pregnancy follow-up to October 2006, Human Reproduction, 23(12):2629-45.
- Goossens, V, Harton, G, Moutou, C, Traeger-Synodinos, J, Van Rij, M and Harper, JC (2009) ESHRE PGD Consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007

www.eshre.com

Data Collection I (January 1997- September 1998)

 The group indicated as 'aneuploidy risk' consits of patients with previous trisomy or triploidy pregnancies, age related aneuploidy or recurrent abortion.

Data Collection II (October 1998 – May 2000)

- Aneuploidy screening
- Comprised a variety of indications among which maternal age predominates. Other reasons included in this group were:
 - Repeated IVF failure
 - Recurrent spontaneous abortion

Data Collection III (May 2001)

- PGD-Aneuploidy screening (PGD-AS)
- The following groups were identified;
 - Age > 35 years
 - Recurrent IVF failure (at least 3 failed IVF attempts)
 - More than 2 miscarriages with the parents having a normal karyotype
 - Other

Data Collection IV (May – December 2001)

• The data is split up into PGD for high-risk situations and PGS

PRENATAL DIAGNOSIS Prenat Diagn 2001; 21: 1086–1092. DOI: 10.1002/pd.249

Preimplantation genetic diagnosis (PGD), a collaborative activity of clinical genetic departments and IVF centres

Joep P. M. Geraedts¹*, Joyce Harper², Peter Braude³, Karen Sermon⁴, Anna Veiga⁵, Luca Gianaroli⁶, Noelle Agan⁷, Santiago Munné⁸, Sue Gitlin⁹, Elisabeth Blenow¹⁰, Kylie de Boer¹¹, Nicole Hussey¹², Emmanuel Kanavakis¹³, Soo-Huan Lee¹⁴, Stéphane Viville¹⁵, Lewis Krey¹⁶, Pierre Ray¹⁷, Serena Emiliani¹⁸, Yung Hsien Liu¹⁹ and Stefan Vermeulen²⁰

¹Research Institute Growth and Development, Universiteit Maastricht, The Netherlands ²Departement of Obstetrics and Gynaecology, University College London, London, UK ³Assisted Conception Unit, St Thomas Hospital, London, UK ⁴Centre for Medical Genetics, Free Brussels University (VUB), Brussels, Belgium ⁵Instituto Dexeus, Barcelona, Spain ⁶SISMER, Bologna, Italy ⁷Department of Obstetrics and Gynaecology, Baylor College of Medicine, Houston, TX, USA ⁸Institute for Reproductive Medicine and Science, St Barnabas Medical Center, West Orange, NJ, USA ⁹Jones Institute for Reproductive Medicine, Norfolk, VI, USA ¹⁰Deptartment of Clinical Genetics, Karolinska Hospital, Stockholm, Sweden ¹¹Sydney IVF, Sydney, Australia ¹²Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, Australia ¹³First Department of Pediatrics, Sophia's Children's Hospital, Athens, Greece ¹⁴Cha General Hospital, Pochon Cha University, Seoul, Korea ¹⁵Service de la Biologie de la Reproduction, Strasbourg, France ¹⁶New York University Medical Center, New York, NY, USA ¹⁷Hopital Necker, Paris, France ¹⁸ULB Erasme, Brussels, Belgium ¹⁹Centre for Reproductive Medicine, Kaohsiung, Taiwan ²⁰Centre for Medical Genetics, Gent, Belgium

PRENATAL DIAGNOSIS Prenat Diagn 2001; 21: 1086–1092. DOI: 10.1002/pd.249

Preimplantation genetic diagnosis (PGD), a collaborative activity of clinical genetic departments and IVF centres

Joep P. M. Geraedts¹*, Joyce Harper², Peter Braude³, Karen Sermon⁴, Anna Veiga⁵, Luca Gianaroli⁶, Noelle Agan⁷, Santiago Munné⁸, Sue Gitlin⁹, Elisabeth Blenow¹⁰, Kylie de Boer¹¹, Nicole Hussey¹², Emmanuel Kanavakis¹³, Soo-Huan Lee¹⁴, Stéphane Viville¹⁵, Lewis Krey¹⁶, Pierre Ray¹⁷, Serena Emiliani¹⁸, Yung Hsien Liu¹⁹ and Stefan Vermeulen²⁰

13 out of 20 centres offered PGS

ESHRE PGD Consortium 'Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)'

A.R.Thornhill^{1,12}, C.E.deDie-Smulders², J.P.Geraedts², J.C.Harper³, G.L.Harton⁴, S.A.Lavery⁵, C.Moutou⁶, M.D.Robinson⁷, A.G.Schmutzler⁸, P.N.Scriven⁹, K.D.Sermon¹⁰ and L.Wilton¹¹

¹Section of Reproductive Endocrinology and Infertility, Mayo Clinic, College of Medicine Rochester, MN, USA, ⁴Genetics and IVF Institute, Fairfax, VA, USA, ²Department of Clinical Genetics, University Hospital Maastricht, Maastricht, The Netherlands, ³Department of Obstetrics and Gynaecology, University College, London, ⁵Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, Hammersmith Hospital, ⁹Department of Cytogenetics, and Centre for Preimplantation Genetic Diagnosis, Guy's and St. Thomas' NHS Trust, Guy's Hospital, London, ⁷The Leeds PGD Centre, Assisted Conception Unit, Leeds General Infirmary, Leeds, UK, ⁶Service de Biologie de la Reproduction, SIHCUS-CMCO, 19 Rue Louis Pasteur, BP120, 67303 Schiltigheim, France, ⁸Section of Reproductive Medicine, University of Kiel, Germany, ¹⁰Centre for Medical Genetics, Dutch-speaking Brussels Free University, Brussels, Belgium and ¹¹Melbourne IVF, 320 Victoria Parade, 3002 East Melbourne VIC, Australia

¹²To whom correspondence should be addressed at: London Fertility Centre, Cozens House, 112A Harley Street, London, W1G 7JH

Among the many educational materials produced by the European Society of Human Reproduction and Embryology (ESHRE) are guidelines. ESHRE guidelines may be developed for many reasons but their intent is always to promote best quality practices in reproductive medicine. In an era in which preimplantation genetic diagnosis (PGD) has become a reality, we must strive to maintain its efficacy and credibility by offering the safest and most effective treatment available. The dominant motivators for the development of current comprehensive guidelines for best PGD practice were (i) the absence of guidelines and/or regulation for PGD in many countries and (ii) the

ESHRE PGD Consortium 'Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)'

A.R.Thornhill^{1,12}, C.E.deDie-Smulders², J.P.Geraedts², J.C.Harper³, G.L.Harton⁴, S.A.Lavery⁵, C.Moutou⁶, M.D.Robinson⁷, A.G.Schmutzler⁸, P.N.Scriven⁹, K.D.Sermon¹⁰ and L.Wilton¹¹

Inclusion criteria for PGS:

- •Recurrent miscarriage
- •Repeated implantation failure
- •Advanced maternal age (> 36 years completed years)

ESHRE PGD Consortium 'Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)'

A.R.Thornhill^{1,12}, C.E.deDie-Smulders², J.P.Geraedts², J.C.Harper³, G.L.Harton⁴, S.A.Lavery⁵, C.Moutou⁶, M.D.Robinson⁷, A.G.Schmutzler⁸, P.N.Scriven⁹, K.D.Sermon¹⁰ and L.Wilton¹¹

FISH based diagnosis

PGS (aneuploidy screening)

For an euploidy screening a robe set of at least 5 chromosome pairs from 13, 14, 15, 16, 18, 21, 22, X and Y is **recommended**.

Diagnosis on a single mononucleate cell is **acceptable** for PGS.

At least 10 RTCs on blastomeres

- Good prognosis patients: Jansen *et al.*, 2008; Mersereau *et al.*, 2008; Staessen *et al.*, 2008; Meyer *et al.*, 2009.
- Poor prognosis patients: Staessen *et al.*, 2004; Stevens *et al.*, 2004; Debrock *et al.*, 2007; Mastenbroek *et al.*, 2007; Hardarson *et al.*, 2008; Schoolcraft et al., 2009.
- These studies have all shown that PGS has not improved the delivery rate compared to a control group, and some of these studies have shown harm or had to be terminated prematurely.

Explanations

- Not all chromosomes were tested;
- The biopsied blastomere is not a true representation of the embryo at the 8-cell stage because of mosaicism;
- The biopsy procedure might cause harm and negative influences on the developmental potential of the biopsied embryo.

Positions

- American Society of Reproductive Medicine (ASRM);
- British Fertility Society (BFS);
- European Society of Human Reproduction and Embryology (ESHRE):

have concluded that PGS as it is currently practiced does not improve the live birth rates in patients with advanced maternal age.

ESHRE PGD Consortium-Best Practice Guidelines for Organization of a PGD Center for Preimplantation Genetic Diagnosis/Screening (PGD/PGS)

Harton, G, Braude, P, Lashwood, A, Schmutzler, A, Traeger-Synodinos, J, Wilton, L, and Harper, JC

 Preimplantation genetic screening (PGS) is currently controversial. Opinions of laboratory specialists and clinicians interested in PGD and PGS have been taken into account in this document. While current evidence suggests that PGS at cleavage stages may be ineffective, there are still questions as to whether PGS at the blastocyst stage or on polar bodies might show improved delivery rates.

From document at the ESHRE website

Evolution of cycle data (I)

Evolution of cycle data (II)

Alternatives

- Trophectoderm biopsy:
 - Advantages: both maternal and paternal abnormalities can be studied and it does not touch the future embryo.
 - Disadvantages: not very much time available for the analysis, there is mosaicism, be it less than at the 8-cell stage. The trophectoderm might not be representative for the inner cell mass.
- Polar body biopsy:
 - Advantages: No mosaicism. Does not touch the future embryo. Allowed in Germany, Austria and Switzerland.
 - Disadvantage: Only maternal abnormalities.

Origin of non-disjunction in human autosomal trisomies

Chromosome	#Cases	Mate	ernal (%)	Paternal (%
13	42	37	(88.1)	5 (11.9)
15	17	15	(88.2)	2 (11.8)
16	56	56	(100.0)	0 (0.0)
18	176	161	(91.5)	15 (8.5)
21	880	805	(91.5)	75 (8.5)

Adapted from Nicolaidis & Petersen (1998)

ESHRE PGS task force (established 2007)

Human Reproduction, Vol.25, No.3 pp. 575-577, 2010

Advanced Access publication on December 23, 2009 doi:10.1093/humrep/dep446

human reproduction

DEBATE

What next for preimplantation genetic screening? A polar body approach!

Joep Geraedts^{1,11}, John Collins², Luca Gianaroli³, Veerle Goossens⁴, Alan Handyside⁵, Joyce Harper⁶, Markus Montag⁷, Sjoerd Repping^{8,9}, and Andreas Schmutzler¹⁰

Aims of ESHRE PGS study

- to show that the analysis of both polar bodies can be completed within a time period that allows for fresh transfer;
- to ensure the reliable identification of the chromosomal status of an oocyte in at least 90% of polar body biopsy attempts;
- to test the feasibility of a multicentre randomized trial based on the technology used in the pilot study.

Aims of proof of principle study

- to show that the analysis of both polar bodies can be completed within a time period that allows for fresh transfer;
- to ensure the reliable identification of the chromosomal status of an oocyte in at least 90% of polar body biopsy attempts;
- to test the feasibility of a multicentre randomized trial based on the technology used in the pilot study.

Materials & Methods

- Two centres (Bologna and Bonn)
- All mature metaphase II oocytes fertilised by ICSI
- First and second polar body biopsied simultaneously
- Both polar bodies analysed separately for chromosome aneuploidy by array CGH (24sure; BlueGnome)

Protocol timings

Number of patients41Number of cycles42Average age 40.05.5Average number of zygotes5.5Total number of zygotes226

Results (predicted oocytes)

Total number biopsied Total number result PB1 and 2 Euploid Aneuploid

226	
191	85%
43	23%
148	77%

Concordance analysis

- Concordance rate ploidy status 89%
- 125/140 oocyte PB 1 and 2 combinations concordant
- 15/140 oocyte PB 1 and 2 combinations discordant
- All discordant cases aneuploid PBs and a normal chromosomal complement in the oocyte

Pregnancy (+hCG)9Clinical pregnancy8

Ongoing pregnancy rate per cycle: 19 % Ongoing pregnancy rate per transfer: 33.3 %

Conclusions

- This is the first critical assessment of 23 chromosome testing of PB 1 + 2 and oocyte using array CGH;
- It has been shown that the analysis of both polar bodies can be completed within 12-13 hours and allows for fresh transfer;
- The reliable identification of the chromosomal status of an oocyte is possible in almost 90% of polar body biopsy attempts;
- The feasibility of a multicentre randomized trial based on the technology used in the pilot study should be tested.

Acknowledgements

Steering Committees from 1997 to 2010

Markus Montag Cristina Magli Sjoerd Repping Alan Handyside Catherine Staessen Katerina Vesela

Joyce Harper Andreas Schmutzler John Collins Veerle Goossens Luca Gianaroli

