PGD: FROM DIAGNOSIS TO THERAPY

MC Magli, L. Gianaroli

S.I.S.ME.R. Reproductive Medicine Unit - Via Mazzini, 12 - 40138 Bologna

www.sismer.it

• ESHRE news • EU Tissues and Cells • Infertility in overpopulated countries Since the birth of the first baby conceived using IVF techniques in 1978 over three million babies have been born worldwide as the result of ART.

The initial goal was treatment of infertility. However, assisted reproduction techniques are no longer used only to help infertile couples, but they have a great significance in the field of <u>therapeutic medicine</u>.

PGD WHY TO GO FOR IT?

"IVF aims at having a child, PGD aims at having a healthy child and PGD/HLA testing aims at having a healthy and helpful child".

UNESCO's report on preimplantation genetic diagnosis (PGD) and Germ-Line Intervention, 2003.

PGD FOR HLA - MATCHING

Healthy embryos are selected for transfer

avoids the need for termination of an ongoing pregnancy in cases of an affected fetus

HLA – matching with an affected child

TABLE OF CONTENTS 3

Vol. 285 No. 24, June 27, 2001

Brief Report

Preimplantation Diagnosis for Fanconi Anemia Combined With HLA Matching

Yury Verlinsky, PhD; Svetlana Rechitsky, PhD; William Schoolcraft, MD; Charles Strom, MD, PhD; Anver Kuliev, MD, PhD

JAMA. 2001;285:3130-3133.

Of 30 embryos tested in 4 attempts, 6 were homozygous affected and 24 were unaffected. Five these embryos Of were also found to be HLAcompatible, of which -2 were transferred in the first and 1 in each of the other 3 cycles, resulting in a pregnancy and birth of an unaffected child in the last cycle

and HL

S.I.S.ME.R. ISO 9001:2008

INDICATIONS FOR PREIMPLANTATION HLA MATCHING

• Haematopoietic disorders requiring HLA compatible HSC donor

- Thalassemia
- Fanconi anaemia
- Wiskott-Aldrich syndrome
- Diamond-Blackfand Anemia
- X-linked Hyper IgM Syndrome
- X-linked adrenoleukodystrophy
- X-linked Hypohidrotic Ectodermal Dysplasia with immune deficiency
- Aplastic anemia
- Diseases like Acute Lymphoid Leukemia, in which HLA matching becomes the primary indication

THALASSEMIA

1.5% carriers in the world \rightarrow 400.000 affected

306 HLA cases

Overall Results and Outcome of Preimplantation Diagnosis for Single Gene Disorders & Preimplantation HLA testing RGI Experience

Testing	Patient/ Cycle	# of Transfers	# Embryos Transferred	Pregnancy / Birth
HLA	127 / 297	194 39.4 delivery	301 y rate / patient	58 / 50 30%
Single Gene Disorders	1012 / 1731	1490	2958	619 / 592 (51)* 41.5%
TOTAL	1139 / 2028	1684	3259	677 / 639 (51)* 40.2%

Reproductive Genetics Institute rgi@flash.net

Rechitsky and Kuliev, RBM Online, 20:S1, 2010

*ongoing pregnancies

HA ARE W

Human Reproduction, Vol.24, No.3 pp. 732-740, 2009

Advanced Access publication on December 5, 2008 doi:10.1093/humrep/den423

human reproduction

ORIGINAL ARTICLE Reproductive genetics

The experience of two European preimplantation genetic diagnosis centres on human leukocyte antigen typing

Hilde Van de Velde^{1,5}, Martine De Rycke², Caroline De Man², Kim De Hauwere², Francesco Fiorentino³, Semra Kahraman³, Guido Pennings⁴, Willem Verpoest¹, Paul Devroey¹, and Inge Liebaers²

¹Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium ²Centre for Medical Genetics, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium ³Centre for Preimplantation Genetic Diagnosis, "GENOMA"—Molecular Genetics Laboratories, Rome, Italy ⁴Department of Philosophy and Moral Science, Bioethics Institute Ghent, Ghent University, Blandijnberg, 2, 9000 Ghent, Belgium

139 couples \rightarrow **284 cycles**

No. analyzed embryos No. diagnosed embryos (%) No. embryos with conclusive HLA diagnosis (%) 2205 2093 (94.9)

1898 (90.7)

	No. embryos with conclusive HLA diagnosis (%)	1898 (90.7)
	HLA identical (%)	401 (21.1)
2093	HLA identical healthy (%)	238/1559 (15.3)
	HLA non identical embryos (%)	1497 (78.9)
	Embryos with recombination (%)	41 (2.2)
	Abnormal embryos (%)	195 (9.3)

139 couples \rightarrow **284 cycles**

- \rightarrow 165 transfers (58%)
- \rightarrow 45 term pregnancies (27%)
- \rightarrow 51 babies born

10 successful HSC transplantations

Van de Velde et al., Hum Reprod 2009

Clinical results: transfers

			Rep Van et al	orted in de Velde , 2009
	HLA+PGD	HLA-only	Total	Ţ↓
No. of couples treated	124	33	157	107
Maternal age	$\textbf{31.6} \pm \textbf{4.8}$	$\textbf{37.3} \pm \textbf{3.6}$	$\textbf{32.6} \pm \textbf{5.1}$	
No. of cycles performed	241	60	301	199
Per couple	1.8 ± 1.2	2.1 ± 1.7	$\textbf{1.9} \pm \textbf{1.3}$	•
No. of transfers (%)	165 (68.4)	45 (75.0)	210(69.8)	
No. of embryos transferred	253	75	328	
Mean no. of embryos transferred	1.0 ± 1.7	$\textbf{1.2} \pm \textbf{0.9}$	1.1 ± 0.7	>

Genoma, Rome (updated 03.2009)

Data modified from: Fiorentino et al. (2004) Mol Hum Reprod 10: 445-460; Fiorentino et al. (2005) Eur.J.Hum Genet. 13: 953-958

Clinical results: pregnancies and babies

	HLA+PGD	HLA-only	Total	Γ
Maternal age	$\textbf{31.6} \pm \textbf{4.8}$	$\textbf{37.3} \pm \textbf{3.6}$	$\textbf{32.6} \pm \textbf{5.1}$	
No. of clinical pregnancies	62	17	79	
Clinical per cycle	25.7%	28.3%	26.2%	
Clinical per transfer	37.6%	37.7%	37.6%	
Miscarriages	11	4	15	
No. of embryos implanted	78	18	96	
Implantation rate	30.8%	24.0%	29.3%	
No. of pregnancies went to term	51	13	64	45
No. of babies born	55	13	68	42
Live birth rate per cycle	21.2%	21.7%	21.3%	

Genoma, Rome (updated 03.2009)

Data modified from: Fiorentino et al. (2004) Mol Hum Reprod 10: 445-460; Fiorentino et al. (2005) Eur.J.Hum Genet. 13: 953-958

Indications	No. of PGD	No. of	Clinical	Babies	СВТ	
HLA typing combined with PGD	Cycles	couples	pregnancies	DOITI		
Sickle cell disease	8	4	3	3	2	
Beta-thalassemia	215	108	53	45	7	
Fanconi anemia	1	1	0	0	1	
Wiskott Aldrich' syndrome	1	1	1	1	1	
Chronic granulomatous disease	1	1	1	2	0	
Duncan syndrome	2	1	1	1	0	
Mannosidosis Alpha	2	1	0	0	0	
Hurler syndrome	2	2	0	0	0	
Gaucher disease	4	1	1	0	0	
Bruton agammaglobulinemia	1	1	1	2	0	
Glanzmann thrombasthenia	1	1	0	0	0	
Adrenoleukodystrophy	3	2	1	1	0	
HLA-only typing						
Acute lymphoblastic leukemia	40	29	12	10	2	
Diamond Blackfan anemia	17	3	4	2	2	
Histiocytosis	3	1	1	1	0	
Total	301	157	79	68	15	7

IVF - Therapeutic medicine

- PGD – HLA matching

- Stem cells

ISO 9001:2008

Different sources / Different Stem cells population

Foetal Stem Cells: Reduced self-renewal Multi/totipotency No teratoma No immunogenicity

Therapeutic Cloning

Problems:

⊜iiarg

Inefficient - may need large numbers (50 to several hundreds) of eggs Technically demanding - need to be available in many or all hospitals

Nuclear Reprogramming

- Somatic Cell Nuclear Transfer (SCNT)
- Induced Pluripotent Stem Cells (iPS)

In vitro hES CELLS Differentiation

- Cells for therapy
 - Parkinson's Disease and other neurodegenerative disorders
 - Diabetes
 - Cystic Fibrosis
 - Vascular and Heart Disease
 - Tissue Injuries

Applications for Embryonic Stem Cells and their Derivatives

- ES cells for research and discovery
- Progenitor cells for drug screening
- Progenitor cells for toxicology
- Gene products (proteins), growth and differentiating factors, cell surface molecules for pharmaceutical use in regenerative medicine

Embryonic Stem Cell Derivatives Applications for Cell and Tissue Therapy

• Vehicles for the delivery of gene therapies

- correcting genetic disease
- new immunization strategies
- targeting cancers

RGI's Repository of Human Embryonic Stem Cells

NORMAL (258 lines)		AUTOSOMAL DOMINANT CONDITIONS (34)	
CHROMOSOMAL ABNORMA	LITIES (14 lines)	BRCA2 (2 lines – of which 1 also has MEN1)	
46X +mar	47,XX,+12	FSHD (7 lines)	
46,XX,der(4)t(4;13)	47,XY,+12	Huntington Disease (7 lines)	
46,XX t(14;17)	47,XX,+13	Marfan Syndrome	
46,XX iso (17q)	47,XX,+14	Myotonic Dystrophy (2 lines)	
47,XY+der(21)t(2,21)	47,XX,+21	Neurofibromatosis, type 1 (7 lines)	
69,XXX	47,XXX	Popliteal Pterygium Syndrome	
	47,XXY (2 lines)	Torsion Dystonia, DYT1 (2 lines)	
		Tuberous Sclerosis, TSC1 (2 lines)	
		Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)	
X-LINKED CONI	DITIONS	Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)AUTOSOMAL RECESSIVE CONDITIONS (24)	
X-LINKED CONI Adrenoleukodystrophy	DITIONS	Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)AUTOSOMAL RECESSIVE CONDITIONS (24)Alpha Thalassemia (1 lines)	
X-LINKED CONI Adrenoleukodystrophy Becker Muscular Dystrophy	DITIONS	Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)AUTOSOMAL RECESSIVE CONDITIONS (24)Alpha Thalassemia (1 lines)Beta Thalassemia (9 lines)	
X-LINKED CON Adrenoleukodystrophy Becker Muscular Dystrophy Duchenne Muscular Dystrop	DITIONS hy (4 lines)	Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)AUTOSOMAL RECESSIVE CONDITIONS (24)Alpha Thalassemia (1 lines)Beta Thalassemia (9 lines)Cystic Fibrosis (8 lines)	
X-LINKED CON Adrenoleukodystrophy Becker Muscular Dystrophy Duchenne Muscular Dystrop Emery-Driefuss Muscular Dy	DITIONS hy (4 lines) vstrophy (2 lines)	Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)AUTOSOMAL RECESSIVE CONDITIONS (24)Alpha Thalassemia (1 lines)Beta Thalassemia (9 lines)Cystic Fibrosis (8 lines)Fanconi Anemia A	
X-LINKED CON Adrenoleukodystrophy Becker Muscular Dystrophy Duchenne Muscular Dystrop Emery-Driefuss Muscular Dy Fragile X syndrome (2 lines)	DITIONS ohy (4 lines) vstrophy (2 lines)	Tuberous Sclerosis, TSC1 (2 lines)Treacher Collins-Franschetti syndrome (3 lines)AUTOSOMAL RECESSIVE CONDITIONS (24)Alpha Thalassemia (1 lines)Beta Thalassemia (9 lines)Cystic Fibrosis (8 lines)Fanconi Anemia ASandhoff Disease (3 lines)	

As of 10/2008

hESCreg

European Human Embryonic Stem Cell Registry

Welcome

 Quicksearch
 Q

 Home

 Detailed Search

 Show available Cell Lines

 Show all Research Projects

 Show all Provider

 My hESCreg

 Login

 Register

 About hESCreg

 Project Structure

 EU hESC Research

 Legislation

 Ethics

 Newsletter

Contact

Welcome

Welcome to the European Human Embryonic Stem Cell Registry - hESCreg

You have entered the work-in-progress site of the hESCreg database. Here you can browse the database or log in using the Username/Password combination issued to you. At the first login we advise you to change your personal Username/Password combination to one only known to yourself. If you are a provider of hES cell lines we are calling on you to complete the minimum registration information for your pre-registered cell lines. If there are any new lines please add them as well. We would greatly appreciate if you could complete this by the end of November 2007. Apart from that we are looking forward to receiving your comments or suggestions. Should you have any problems operating the database or would like to contribute to the further development of the database please direct all communication to helpdesk@hescreg.eu.

Until the official launch of hESCreg on January 18, 2008, in Berlin the interim web page at www.hescreg.eu will act as the official information resource of the initiative.

Thank you very much in advance for your contributions!

