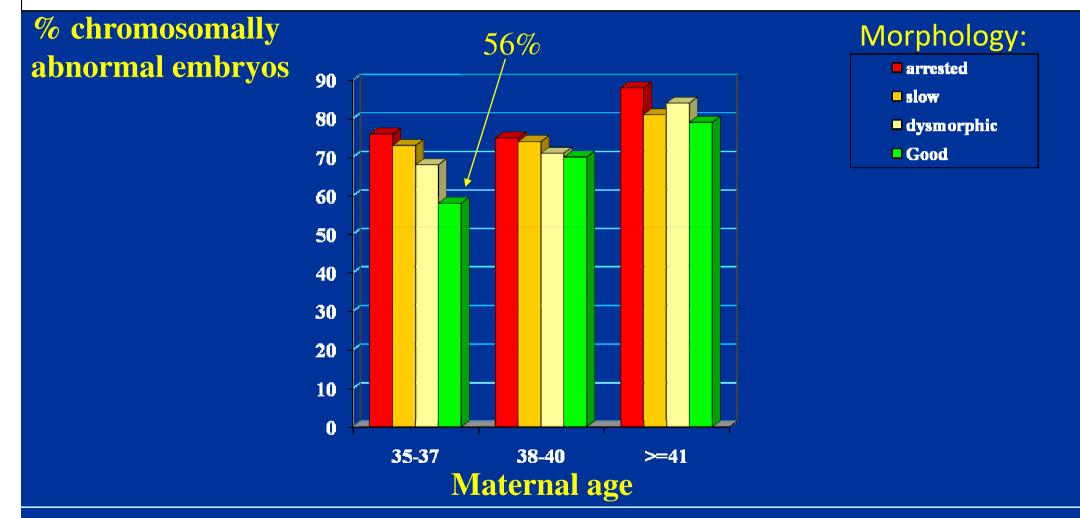

PGD for infertility

Santiago Munné

USA: Livingston, NJ


Europe: Barcelona, Spain Oxford, UK Hamburg, Germany

Asia: Kobe, Japan

South America: Lima, Peru

The majority of embryos with 'good' morphology are chromosomally abnormal

Reprogenetics

embryos analyzed: 6054. Morphologically normal embryos: 3751. Source: Munné et al. 2007. Similar results also found by Munne et al 1995, Marquez et al. 2000, Magli et al. 2007.

PGD may improve ART outcome in women of advanced maternal age Munné et al. (1993)

Despite large studies indicating the advantages of aneuploidy screening, the notion that PGS for infertility is beneficial is not shared uniformly.

Contradicting PGD results using day 3 biopsy and FISH

Positive effect

Gianaroli et al. 1999 Munne et al 1999 Gianaroli et al 2001a Gianaroli et al. 2001b Munne et al. 2003 Gianaroli et al. 2004 Munne et al. 2005 Munne et al 2006 Verlinsky et al. 2005 Colls et al. 2007 Garrisi et al. 2009 Rubio et al. 2009

No effect (small) Werlin et al. 2003 Jansen et al. 2008 Mersereau et al. 2008 Scholcraft et al. 2009

No effect (Large) Staessen et al. 2004 Platteau et al. 2005

Negative effect

Mastenbroek et al. 2007 Hardarson et al. 2008 Contradicting PGD results using day 3 biopsy and FISH

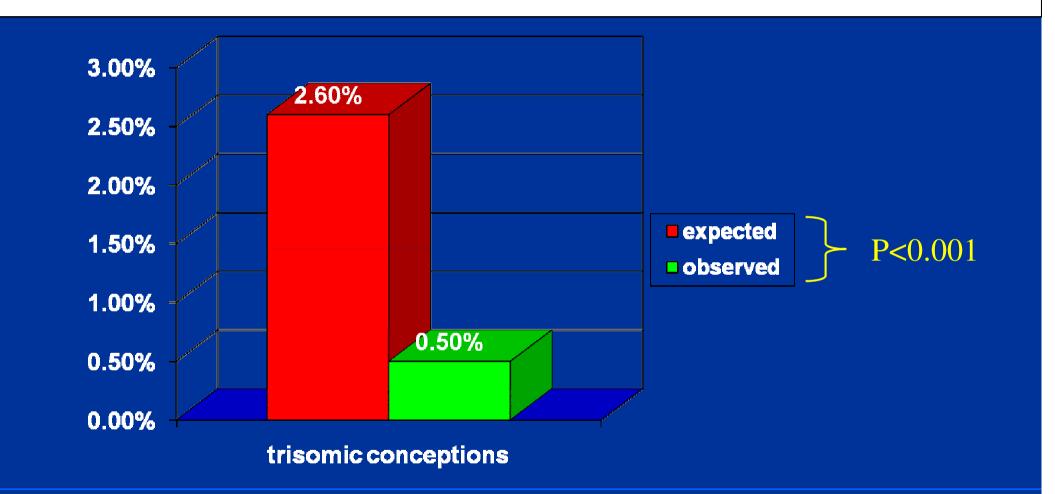
Proposed explanations:

Mosaicism and self-correction
 Sub-optimal PGD and biopsy methods


Mosaicism

Mosaicism produces <7% misdiagnosis

normal13mosaic <49% abnormal</td>27mosaic 50-99% abnormal124mosaic 100% abnormal297homogeneously abnormal131


Colls et al. (2007)

Reprogenetic

Negative predictive value

Aneuploidy rates for chromosomes X,Y,13,18,21. Munne et al. 2006 and Reprogenetics data up to 10/2007. Average age 37, Observed: Based on 2300 pregnancies after PGD, Expected: Eiben et al. 1994. Observed and expected adjusted by maternal ages

self-correction myth

Trisomy correction is rare: UPD evidence Reprogenetic

UNIPARENTAL DISOMY:

Trisomy rescue: creates a zygote with 2 chromosomes from one parent and none from the other.

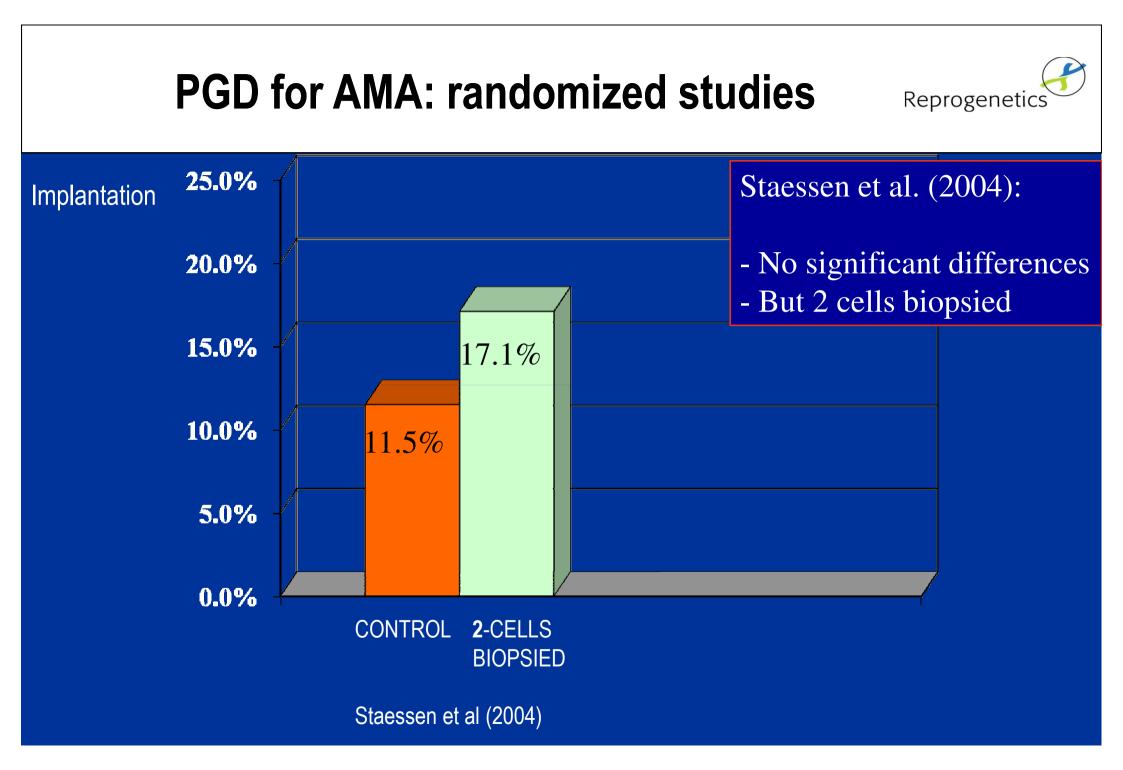
EXAMPLE TRISOMY 15:

Trisomy 15 in cleavage stage embryos:	1.874% a
UPD-15 in newborns:	0.001% b
Estimated correction of trisomy 15 to UDP:	1/3 c

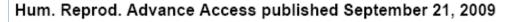
Trisomy 15 day 3 embryos that self-corrected: a x b x c = 0.56%

a: Munne et al. (2004), b: From: OMIM, c: 1/3 of corrections will produce UPD

2005, Dev. Biol. 279, 420-432


This work questions the assumption that placental confined mosaicism is the result of fetal self-correction. At the contrary, it suggests that normal fetuses may develop abnormal placenta. Sub-optimizal methods (FISH studies, day 3 biopsy)

Optimal PGS methods



	Optimal PGS	Questionable PGS
Biopsy media	with aminoacids	simple media
Biopsy time / embryo	1 min	> 5 min
# cells biopsied	one	two
Fixation method	Carnoy's	Tween 20
# chromosomes tested	≥8	≤6
# analysts / case	2	1
Use of NRR*	yes	no
Large experience	yes	no
Error rate	<10%	10-50%
Number of zygotes	>5	≤ 5

*NRR: No result rescue, or re-testing of dubious chromosome with different probes.

Two cell biopsy is detrimental

human reproduction

ORIGINAL ARTICLE Embryology

Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: a prospective cohort of single embryo transfers

A. De Vos^{1,4}, C. Staessen², M. De Rycke², W. Verpoest¹,
P. Haentjens³, P. Devroey¹, I. Liebaers², and H. Van de Velde¹

"The data presented here clearly indicates that two cell biopsy significantly impacts clinical outcome. Our previous report providing no arguments in favour of PGS (Staessen et al., 2004) was criticised by others arguing that PGS might have been beneficial if only one cell had been removed (Cohen et al., 2007). In respect to the present findings, this criticism seems justified".

PGD for AMA: randomized studies Mastenbroek et al. (2007)

20% of <u>cycles</u> undiagnosed (literature: 1-3% of <u>embryos</u>*)
 59% implantation reduction due to biopsy:

implantation

14.7%

16.8%

Control Biopsied, no PGD Biopsied and PGD

- 59% reduction

3) Average number of embryos analyzed was only 54) Chromosomes 15 and 22 (21% abnormalities) not analyzed

* 1% Gianaroli et al. (2004), 3.1% Colls et al. (2007)

At least 9 chromosomes should be tested:

% abnormal fetuses detectable 28% 47% 70% 80% 100%

Minimum number of embryos to do PGD Reprogenetic

# 2pn's	Av. Age	Pregnancies
1-5	38	22%
6-9	38	36%
10-13	38	40%
≥ 14	38	48%

Data: Last 300 cases, to 7/2007, Saint Barnabas Medical center, unpublished

Error rate should be <10%

Analysis of remaining cells of embryos previously analyzed by PGD:

study	technique	error rate
Baart et al 2004	FISH	50.0%
Li et al. 2005	FISH	40.0%
Gleicher et al. 2009	FISH	15-20%
Munne et al. 2002	FISH-9	7.2%
Colls et al., 2007	FISH-9	4.7%
Magli et al. 2007	FISH-9	3.7%
Munne et al. 2010	array CGH	1.8%

PGD for Recurrent Pregnancy Loss (RPL)

All controlled PGD studies on idiopathic RPL show a decrease in miscarriages

Idiopathic RPL :

Werlin L, et al. (2003) Preimplantation genetic diagnosis (PGD) as both a therapeutic and diagnostic tool in assisted reproductive technology. Fertil Steril, 80:467

Munné et al. (2005) Preimplantation genetic diagnosis reduces pregnancy loss in women 35 and older with a history of recurrent miscarriages. Fertil Steril 84:331

Garrisi et al. (2009) Effect of infertility, maternal age, and number of previous miscarriages on the outcome of preimplantation genetic diagnosis for idiopathic recurrent pregnancy loss. Fertil. Steril 92: 288

Rubio et al. (in press) Prognosis factors for Preimplantation Genetic Screening in repeated pregnancy loss. Reprod Biomed Online, in press

Reduction in miscarriages in RPL after PGD

PGD results according to previous number of miscarriages

# previous miscarriages	cycles	% loss expected		% loss after PGD		
2	90	29%	19%	N.S.		
>2	190	38%	9%	p<0.00.1		

Garrisi et al. (2009), and Reprogenetics, unpublished

Reduction in miscarriages in RPL after PGD

PGD results according to age when previous number of miscarriages is 3-5

maternal age	cycles	% loss expected	% loss after P	
<35	78	26%	10%	p<0.025
≥35	202	39%	13%	p<0.001

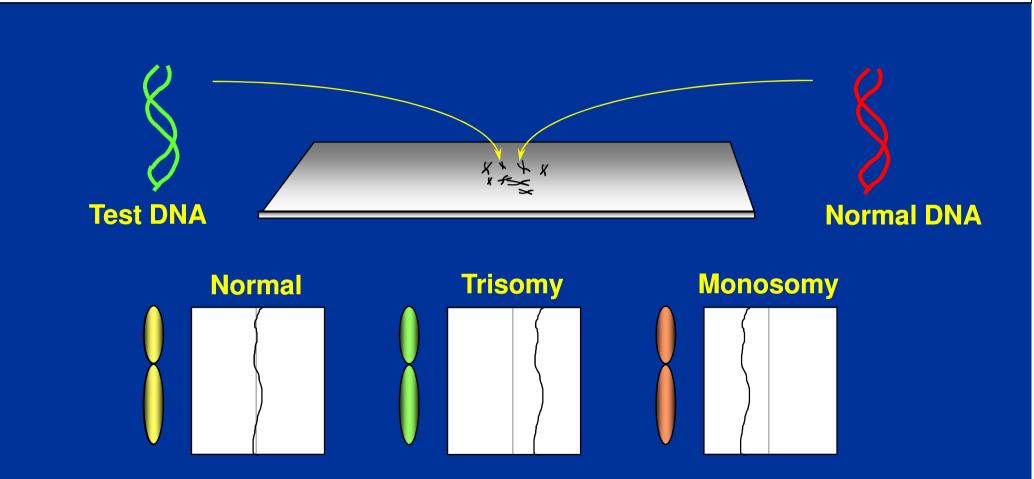
Garrisi et al. (2009), Reprogenetics, unpublished results

Reduction in miscarriages in RPL after PGD

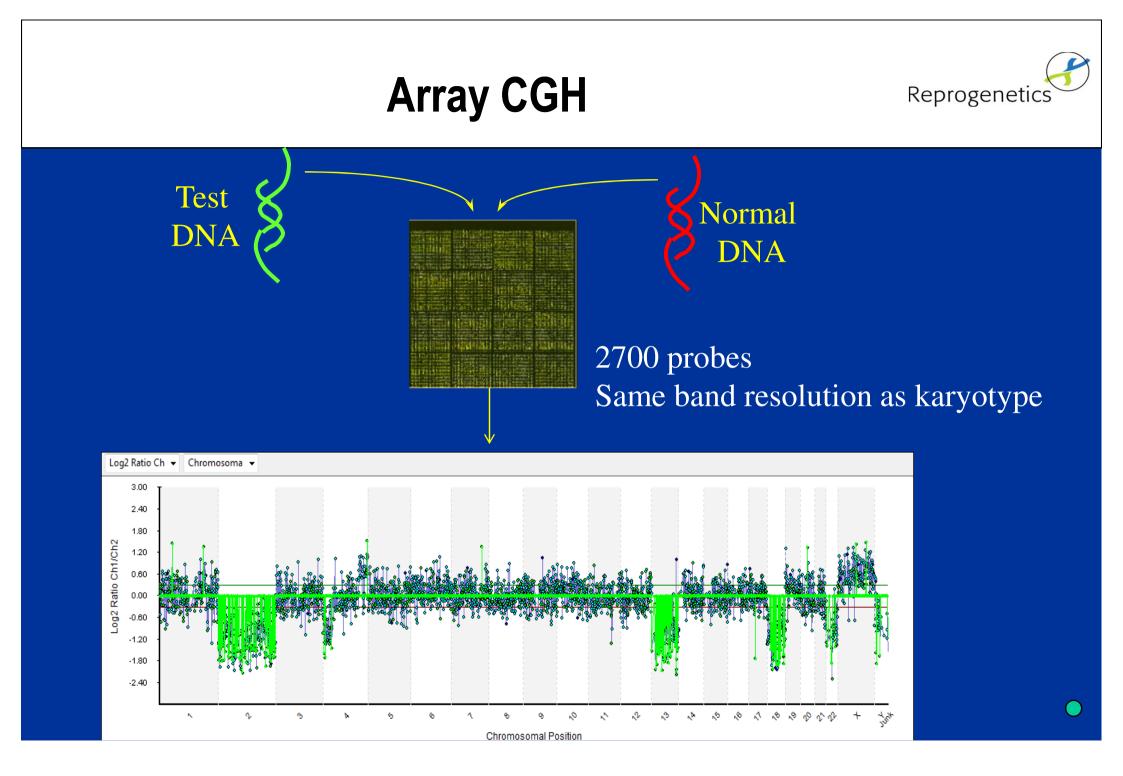
PGD results according to fertility

method	cycles	% loss	% loss			%
conception		expected	after P	GD	р	to term
IVF	115	35%	14%	p<0.	.01	34%
natural	124	41%	15%	p<0.	.005	37%

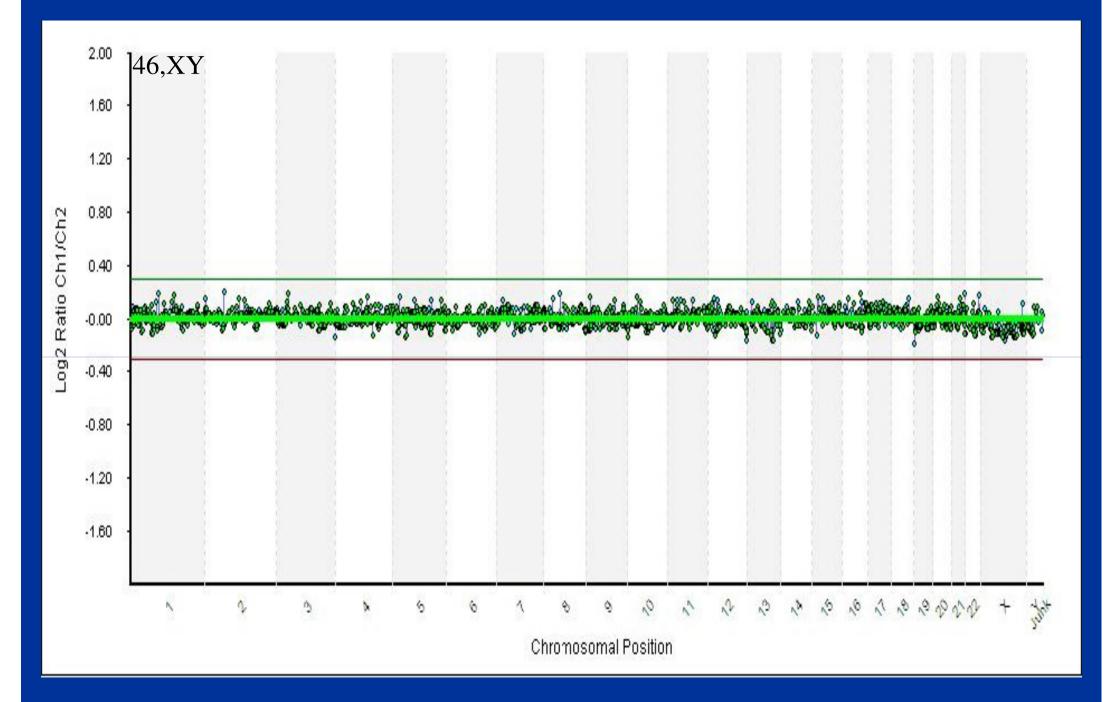
Average maternal age: 37.5 Garrisi et al. (2009)

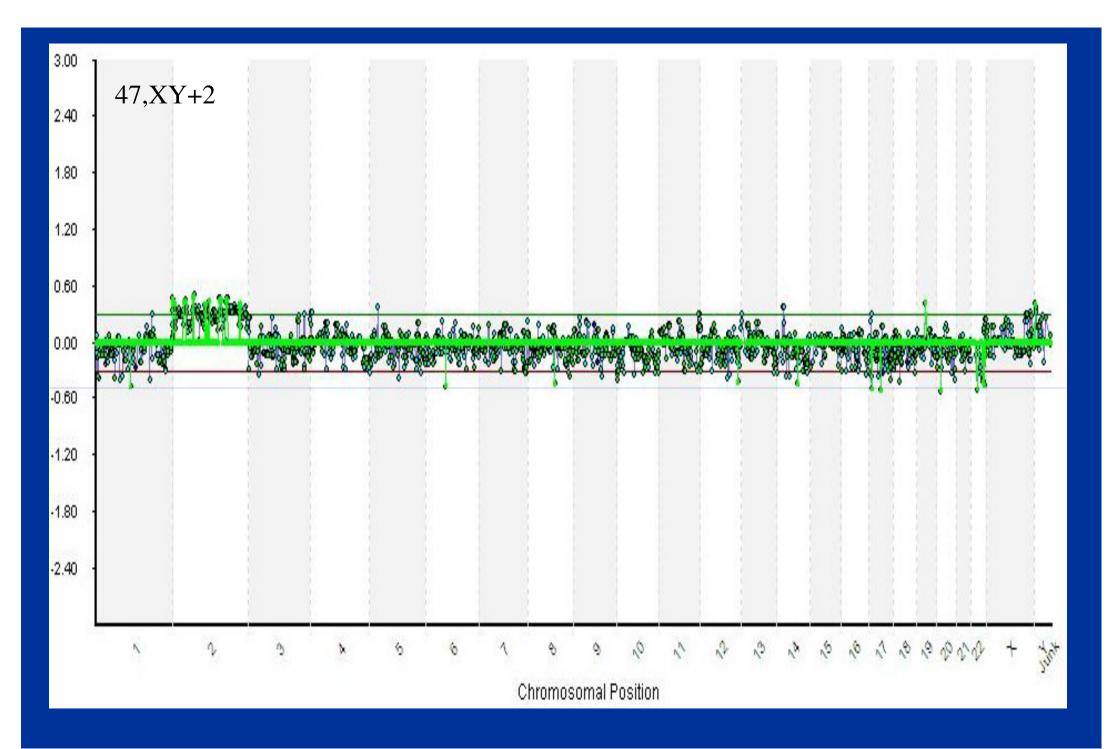

New approach to PGD:

 24 chromosome analysis by arrays


 Blastocyst biopsy and vitrification

Comparative Genome Hybridization (CGH)


Kallioniemi et al. (1992), applied to single cells by Wells et al. (1999)



aCGH advantages

- All 24 chromosome type of aneuploidies detected
- Results in 24 hours; allows for PB or day 3 biopsy
- Parental DNA not required: ad hoc decisions possible
- Used in >15,000 patients with mental retardation

aCGH validation: no results

Embryos undiagnosed:

biopsy on day **3**: 2% (16/724)

biopsy on day 5: $\approx 0\%$ (0/64)

Gutierrez-Mateo et al. (in press)

aCGH validation: error rate

Validation method 1: single cells from cell lines analyzed*

Error rate in euploid cell lines: 0/9 Error rate in aneuploid cell lines: 0/42

 Validation method 2: Reanalysis of the rest of the embryo by FISH with 19 chromosomes probes**


Error rate from day 3 biopsies: 1.8% (1/56)

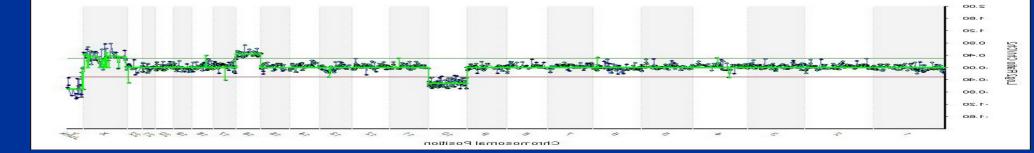
* Mamas et al (submitted), ** Gutierrez et al. (in press)

Detection of abnormalities: aCGH vs FISH-12

aCGH detected 50% more abnormalities than FISH-12 and 20% more abnormal embryos (Colls et al. 2009)

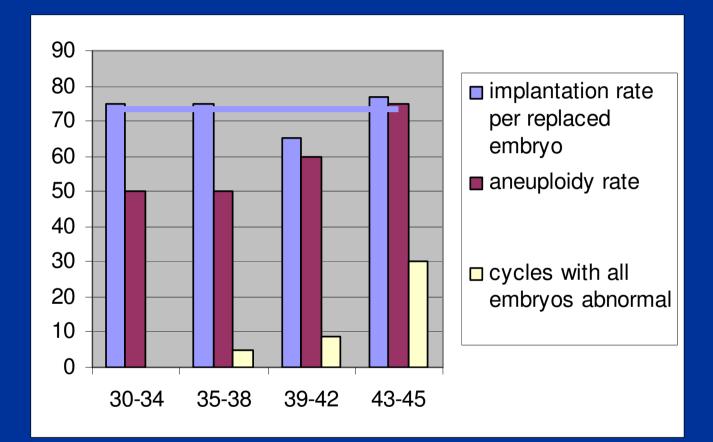
Day 3 biopsy, day 5 transfer and array CGH						
	erformed: I age (av.)	219 37.5				
	<i>Pregnancy</i> Per Cycle	<i>r Rate</i> Per ET	<i>Ongoing F</i> Per Cycle	Pregnancy Rate Per ET		
Control PGD	37% 46% NS	37% 60% < 0.001	31% 42% NS	31% 55% < 0.001		

* Expected from each center SART data, controlled by age Data from 24 centers. Munné et al. (2010) ESHRE, and unpublished data


array CGH on blastocyst biopsies: Why?

Advantages:

- 1) More DNA: More robust diagnosis
- 2) Eliminates some mosaic embryos
- 3) Reduces error rate
- 4) Reduced impact of embryo biopsy
- 5) Less embryos to process
- 6) Facilitates single embryo transfer
- 7) Uterine environment optimized after thaw


CGH on blastocyst biopsies: clinical results						Reprogenetics
	Cycles		Prev. failed	embryos replaced cycles	implant. (+ sac)	ongoing preg.
CGH :	45	37.7	2.4	2.0	67%	79%
control :	113	37.1	1.2	2.7	28%	60%

p=0.0003

Schoolcraft et al. (in press)

CGH on blastocyst biopsies: Implantation is independent of age

Patients <43 who are eligible for blastocyst transfer have a >95% change of having normal embryos available for transfer

Results of aCGH in PB and day 3 biopsies Reprogenetics

40

42

n/a

n/a

19%

11%

ESHRE study: **PB** data

Reprogenetics: data day 3 biopsy

Average age
Cycles
Embryo replaced
Implantation rate
Pregnancy rate
Error rate

Average age	40
Cycles	107
Av. Embryos replaced	1.0
Implantation rate	31%
Pregancy rate	26%
Error rate	<mark>2</mark> % *

* Gutierrez-Mateo et al., Fertil Steril, accepted

SNP and CNP arrays: For diagnosis of aneuploidy

aCGH vs. SNP arrays: Genome coverage

	# of probes		probe size		genome covered
aCGH	4,000	X	150,000 kb	=	600.0 Mb (25%)
SNPs	300,000	X	50 kb	=	1.5 Mb (>0.1%)

SNP arrays: Treff ' team validation

Comparison of implantation rates for those cases with mixed transfers:

- 33 transfers with a mix of SNP array normal and abnormal embryos
- 17 ongoing / delivered pregnancies
- 86 total embryos transferred:
- 42 normal
- 44 abnormal

	Embryo delivers	Failed Ongoing development
PGD normal	18	24
PGD abnormal	0	44
		P<0.01

Slide adapted from R. Scott

SNP arrays: Treff ' team

Blastocyst biopsy, Cryopreservation, SNP array, transfer in thawed cycle

- N=368
- Two centers: RMANJ, CCRM
- Age = 38.2 years
- Number of prior attempts = 2.4
- <u>Blastocysts</u> transferred = 1.6
- •Pregnancy rates:
 - clinical: 80%
 - ongoing past 1st trimester: 76%
 - sustained implantation rate: 60%
 - rates equivalent at the two centers (differ by < 1%)

CONCLUSIONS

Conclusions: chromosome abnormalities

- Age and morphology are poor indicators of aneuploidy

 Less than 50% of good morphology day 3 embryos and less than 60% of blastocysts are normal in patients >35

 Selecting for euploid embryos should improve ART outcome

Conclusions: FISH studies

Studies with improved results differ from those that show no improvement in that:

Reduce biopsy damage (1 cell, experience, blast?)
 Low error rate (fixation, NRR, 2 analyzers)
 Analyze 16,15,21,22 chromosomes + ≥4 more
 Extensive experience
 Appropriate population (≥5 embryos, ≥ 35 y. old)

Conclusions: array CGH

- Blastocyst biopsy + CGH, SNP arrays + vitrification shows very high implantation rates (72%, av. Age 38).
- Array CGH and day 5 biopsy will produce same results
- Array CGH and day 3 biopsy improves results when normal embryos are available.
- Additional vitrification step may still be advantageous

Santiago Munné, PhD, Director Jacques Cohen, PhD, Director

USA

Pere Colls, Ph.D Dagan Wells, Ph.D George Pieczenik, Ph.D Cristina Gutiérrez, Ph.D Jorge Sanchez, PhD John Zheng, MD Tomas Escudero, MS Kelly Ketterson, MS Jill Fischer, MS Gary Harton, MS Jessica Vega, MS Tim Schimmel Sasha Sadowy Sophia Tormasi N-neka Goodall Renata Prates Piedad Garzón Laurie Ferrara Bekka Sellon-Wright Maria Feldhaus Reprogenetics

Spain Mireia Sandalinas, MS Carles Giménez, PhD César Arjona, MS Ana Jiménez, PhD Elena Garcia, MS

> Japan Tetsuo Otani, MD Muriel Roche Miho Mizuike

UK Dagan Wells, PhD Elpida Fragouli, PhD Samer Alfarawati, MS Michalis Konstantinidis

South America Paul Lopez Luis Alberto Guzman

Germany Karsten Held, MD

munne@reprogenetics.com www.reprogenetics.com