PRENATAL OR PGD – WHICH ONE TO CHOOSE?

JOE LEIGH SIMPSON, M.D. FLORIDA INTERNATIONAL UNIVERSITY COLLEGE OF MEDICINE MIAMI, FLORIDA

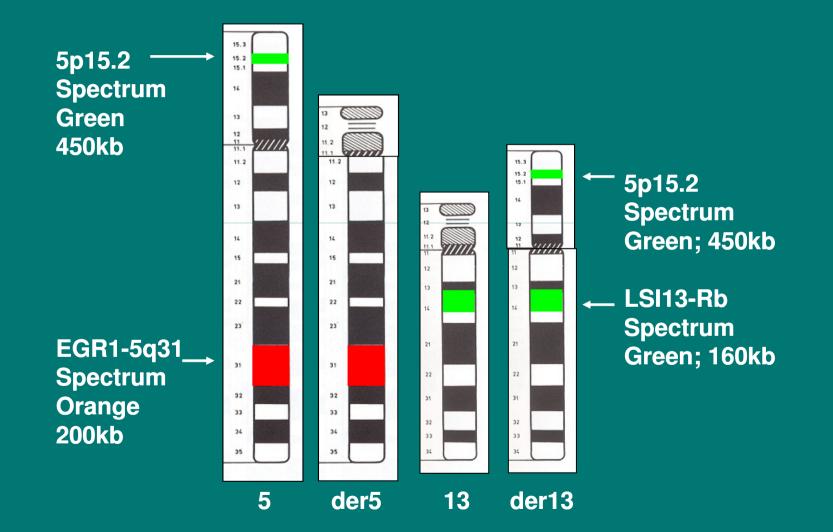
Genetic Conditions for Which Prenatal but Not Preimplantation Genetic Diagnosis Applicable

- Fetal structural abnormalities detectable only by ultrasound
- Follow up noninvasive aneuploidy screening (maternal serum analytes) followed by need for definitive diagnosis

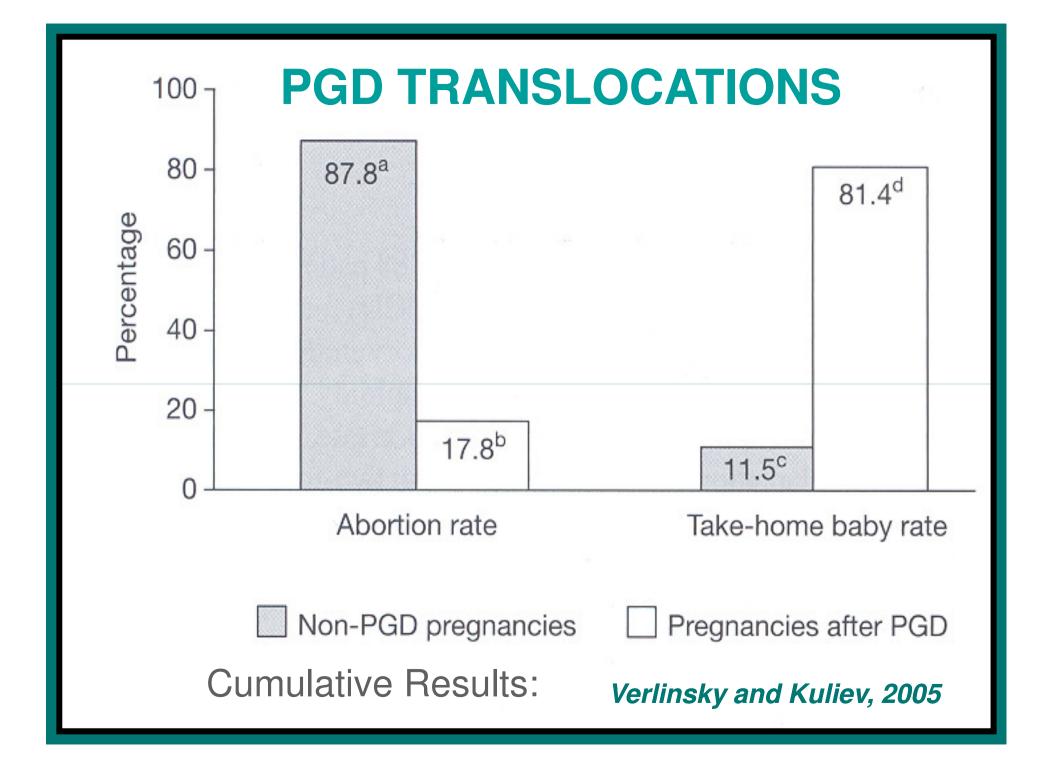
Genetic Conditions in Which PGD Possible but not Practical

 Advanced Maternal age absent need for ART

	<u>Age (y)</u>	Aneuploidy
	30	1/ 384
	35	1/204
	40	1/ 65
sk of Amnio	centesis o	r CVS
00 to 1/500 ir	n exnerien	ced hands


R

GENETIC CONDITIONS FOR WHICH EITHER PREIMPLANTATION OR PRENATAL DIAGNOSIS APPLICABLE


- Translocations
- Mendelian disorders
- Aneuploidy testing solely to exclude abnormal liveborn

Usually prenatal save extenuating situations

46,XY,t(5;13)(p10;q10)

- Cannot distinguish balanced normal from genetically normal

RECIPROCAL TRANSLOCATIONS

Tissue	UNBALANCED		
Chorionic Villi	10-12%		
Blastomeres*	70-90%		

GENETIC INDICATIONS FOR WHICH PGD PREFERENTIAL

- Translocations
- Transferring normal embryos without translocation
- Achieving livebirth more rapidly

LIKELIHOOD REPEATED PREGNANCY LOSS*: Applicable as well for Translocations

	Prior Abortions	<u>Risk*</u>
Prior		
Liveborns	0	5 - 10%
	1	20 - 25%
	2	25%
	3	30%
	4	30 - 35%
No Prior		
Liveborns	3	40%
* Maternal-age de	ependant	Simpson, 2002

WHY USE PGD IF 60-70% EVENTUALLY BECOME PREGNANT?

(Balanced Translocation Heterozygotes)

	Imulative Live birth rate	Time to pregnancy
Sugiura-Ogasawa (2004)	68% -	16 year follow up
Goddijn (2004)	70%	- 6 year (mean)
Stephenson & Sierra (200)6) 71%	- 4 vear (mean)

PGD recommended given time to achieve pregnancies naturally. ASRM/SART Practice Committees *Fritz & Schattman, Fertil Steril 90: 892, 2008.*

GENETIC INDICATIONS FOR WHICH PGD PREFERENTIAL

- Mendelian Disorders
 - Adult onset disorders (family dynamics and high risk)
 - Testing more than one disorder (high likelihood abnormal fetus)
 - De novo mutation
- PGD can determine phase for linkage analysis)

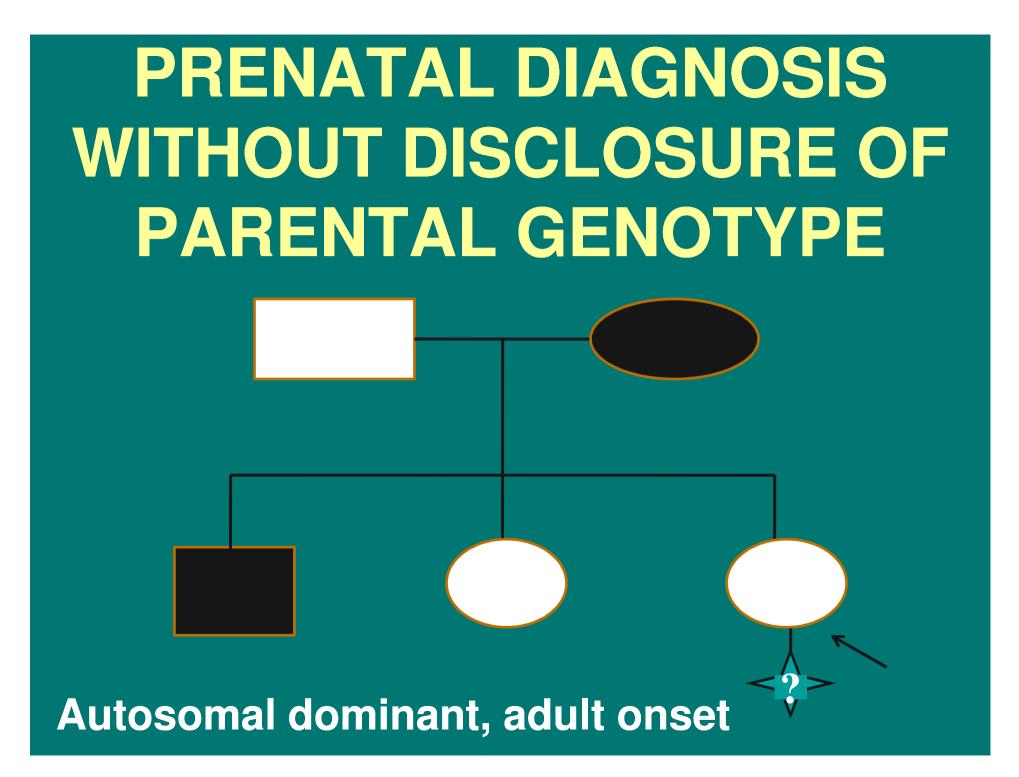
DETERMINE PHASE IN DE NOVO DOMINANT MUTATIONS OR RECESSIVE HETEROZYGOSITY

<u>Male</u>

- Single sperm (haplotype) analysis in absence other affected family members
- Determining phase in gonadal mosaicism

 Excluding affected can utilize prenatal or PGD approaches

PGD TO DETERMINE PHASE IN DE NOVO MATERNAL MUTATIONS


Female

- Polar Body (haplotype 1st versus 2nd polar body)
- establish phase in de novo germinal mutation

Cycle (Embryo)

 Establish basis of unequivocally normal or affected embryo Genetic Indications Uniquely Addressed Through PGD

- Avoiding clinical terminations
- Single gene disorders in which nondisclosure is required
- Single gene disorders in which identifying HLA compatible embryos required

AVOIDING UNNECESSARY TRANSFERS IN NONDISCLOSURE PGD

- Provide no information on status or number of oocytes
- Perform an euploidy testing concurrently. Failure to transfer could be far more than a single reason.

Genetic Indications Uniquely Addressed Through PGD

- Avoiding clinical terminations
- Single gene disorders in which nondisclosure is required
- Single gene disorders in which identifying HLA compatible embryos also required

PGD FOR STEM CELL TRANSPLANTATION

- **Genetic Disorders (25% risk)**
- Fanconi anemia
- β-thalassemia
 - Non-functioning bone marrow treated with stem cells from normal bone marrow or umbilical cord blood
 - HLA match ~95% successful
 - Non HLA match ~60% successful

LIKELIHOOD OF TRANSFERRABLE EMBRYO

Autosomal Recessive

HLA Compatible = 1/4 Normal (Autosomal Recessive): ³/₄ Thus, 1/4 • 3/4 = 3/16

Overall Results and outcome of PGD for Single Gene Disorders & Preimplantation HLA testing

Testing	Patient/ Cycle	# of Transfer	# Embryos Transfer red	Pregnancy / Birth
HLA	127/ 297	194	301	58 / 47 (3)* 30 %
Single Gene Disorders	1012 / 1731	1490	2958	619 / 592 (51)* 41.5%
TOTAL	1139 / 2028	1684	3259	677 / 639 (54)* 40.2%

MA AND AN

Impact of Aneuploidy Testing on Preimplantation HLA Typing Efficiency & Outcome

	HLA	HLA + Aneuploidy	TOTAL
Mean Age	36.5	37.2	
Patient / Cycle	13 / 35	30 / 57	43 / 92
Total Embryos	319	428	747
Matched Embryos	^s 65	85 (58 N + 27A)	150
Non-matched Embryos		66% 343 (181 N+162A)	597
Transfers	254	53% 35 (61.4%)	<mark>61</mark>
# Embryos transfe	erred <mark>26</mark> (74	%) 53 (.9)	94
Pregnancy	<mark>41</mark> (1.6)	17 (48.5%)	24
Birth	7 (27%		17(2) *
	6	C Reproductive Ge	enetics Institute

PGD FOR PURPOSES OTHER THEN PND

- Social sexing
- HLA identical embryos at risk for genetic disorder (e.g., prior child with leukemia): 1/4 likelihood)
- PGD aneuploidy testing (PGS)

PGD CYCLES FOR SOCIAL SEXING (ESHRE)

	Social Sexing	Total
1997-2004 (Collections I-VII)	412 (3.3%)	12,397
2005 (Collections VIII)	85 (2.4%)	3,488

Goosens at al, 2008

PGD CYCLES FOR SOCIAL SEXING (ESHRE)

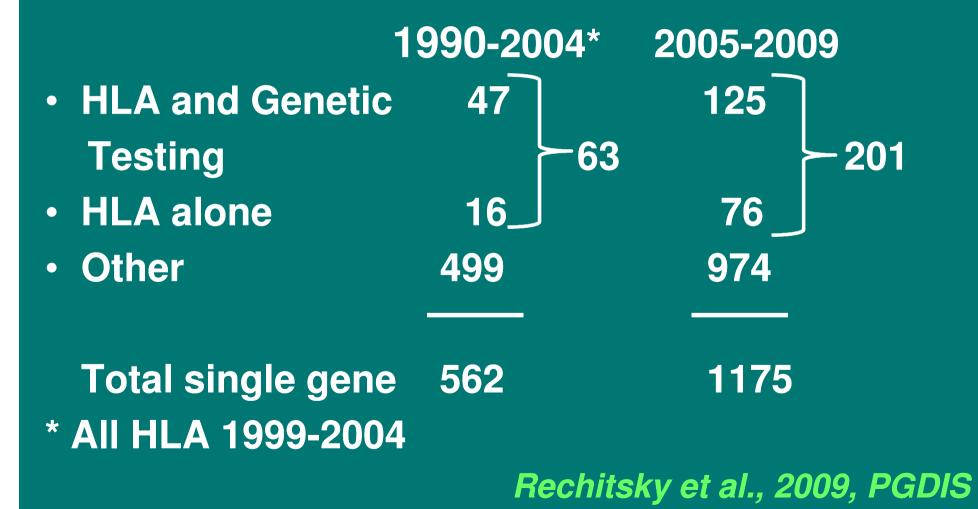
Social Sexing Cycles85Sex Preference (Male: Female)55:30Embryo Transfer65/85 (78%)Implantation Rate21/108 (19%)Delivery Rate (per oocyte retrieval) 13/85 (15%)

Goosens at al, 2008

CHARACTERISTICS OF COUPLES SEEKING FAMILY BALANCING (Baylor College of Medicine)

Determine attitudes and beliefs of couple desiring family balancing (after first child) through ART (interview by bioethicist)

 Inquiries
 Offered Interviews
 47
 Interviewed
 18


Interviews revealed logical reasons

McAdoo, Sharp, McGowan, Carson, Simpson; PGDIS, 2009

PGD FOR PURPOSES OTHER THEN PND

- Social sexing
- HLA identical embryos at risk for genetic disorder (e.g., prior child with leukemia): 1/4 likelihood)
- PGD aneuploidy testing (PGS)

Reproductive Genetics Institute HLA Alone Typing

PGD ANEUPLOIDY TESTING (PGS)

- Rationale:
 - High frequency aneuploidy even in morphologically normal embryos (50%)
- Strategy:
 - Transfer only euploid embryos
- Goals:
 - Reduce abortions
 - Increase livebirths

REDUCTION IN MISCARRIAGES IN RECURRENT PREGNANCY LOSS

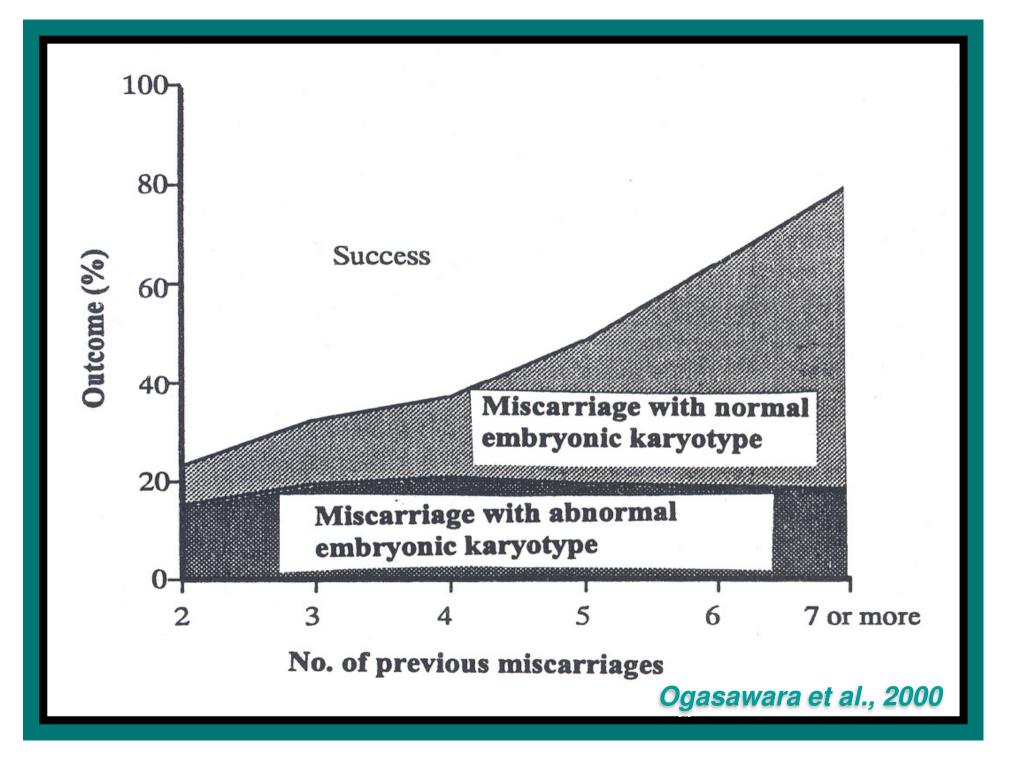
maternal	cycles	★% loss	% loss	
age		expected	after PGD	
<35	85	26%	13%	p=0.09
≥35	143	39%	13%	p<0.001
Total	228	33%	13%	p<0.001

Logistic regression that takes into account maternal age, number, prior abortions Brigham Hum Reprod 14: 2868, 1999

Munné et al. (2008)

PGD Aneuploidy Testing To Increase Livebirth Rate (CONTROVERSY)

- Impressive data from most experienced 3 centers, but no randomized clinical trials conducted in those centers
- RCTs in other centers have not shown benefit, but some unwittingly show embryo biopsy per se is harmful.


CLINICAL INDICATIONS FOR PGD ANEUPLOIDY

- Not just any maternal age but perhaps maternal age ≥ 38
- Not just any stimulated cycle but only those with sufficient number of morphologically normal embryos (≥6?)
- Not just any recurrent loss cases but those with 3-5 and with prior aneuploidy confirmed (recurrent aneuploidy)

RECURRENT ANEUPLOIDY

First 🔪	Second Abortion				
Abortion	lormal	M	onoTri	Poly	Trans
Normal	69	2	6	5	0
Monosomy	7	1	3	1	0
Trisomy	10	1	27	2	0
Polyploidy	7	1	3	2	0
Translocatio	n 0	1	0	0	6

PREDICTIONS REGARDING PGD ANEUPLOIDY TESTING (JLS)

- Will be efficacious <u>with</u> precise indications (maternal age, prior aneuploidy in recurrent losses, sufficient morphologically normal embryos)
- Will prove efficacious <u>with</u> skilled embryo biopsy
- Will be efficacious <u>with</u> 24 chromosome assessment

PRENATAL OR PGD

1. PGD has accepted but still limited place overall in reproductive medicine and prenatal genetic diagnosis

2. PGD is possible but PND more practical for certain traditional indications

PRENATAL OR PGD

3. PGD may be preferable to PND in certain indications (translocations especially with advanced maternal age; single gene adult onset disorders) 4. PGD uniquely applicable for avoiding clinical terminations, nondisclosure, HLA typing

PRENATAL OR PGD

5. PGD alone applicable for selected non-genetic indications (HLA solely for matching; improving livebirth rates in ART)