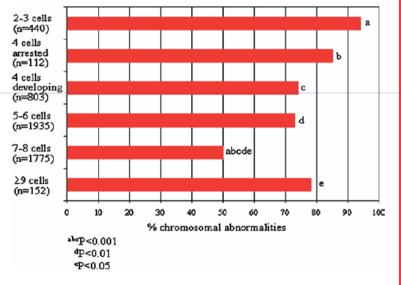
What has PGD-A taught us about ART and preimplantation development?

Dr. Leeanda Wilton Scientific Director Preimplantation Genetics Melbourne IVF

leeanda.wilton@mivf.com.au



Embryo morphology/development and chromosome error

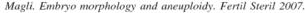
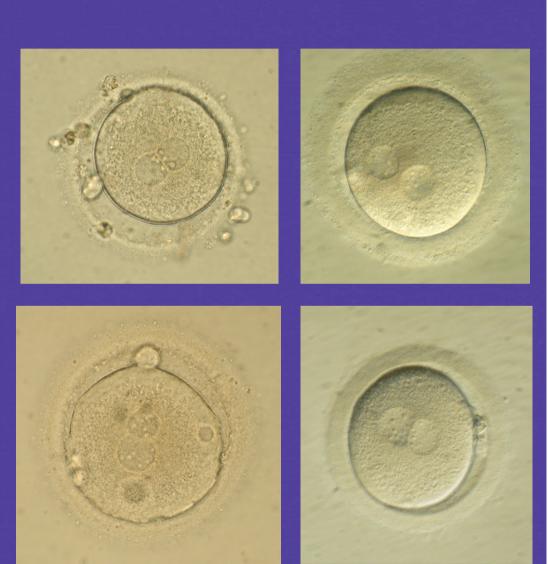

- Some features of embryo development are associated with increased chromosome error
- Increased abnormality if development is:
 - Delayed or arrested
 - Accelerated
- Embryos that grow at expected rate have lowest frequency of error

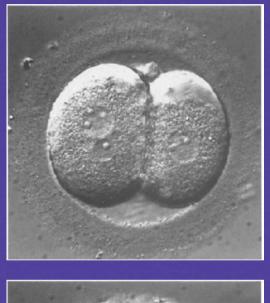
FIGURE 1

Chromosomal abnormalities and cellular stage, 62 hours after insemination.

Melbourn

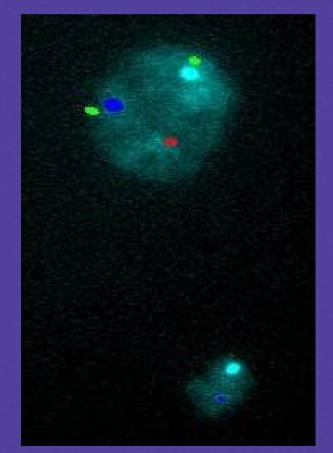

Fragmented embryos

- Fragmentation is common in early embryos
- Strong correlation with implantation and pregnancy
- Munné 2006: high (>35%) fragmentation
 - Polyploidy/haploidy
 - Mosaicism
- Type of fragmentation matters in good embryos (Magli et al., 2007)
 - Scattered fragments associated with increased chromosomal errors


Pronuclear morphology and chromosome error

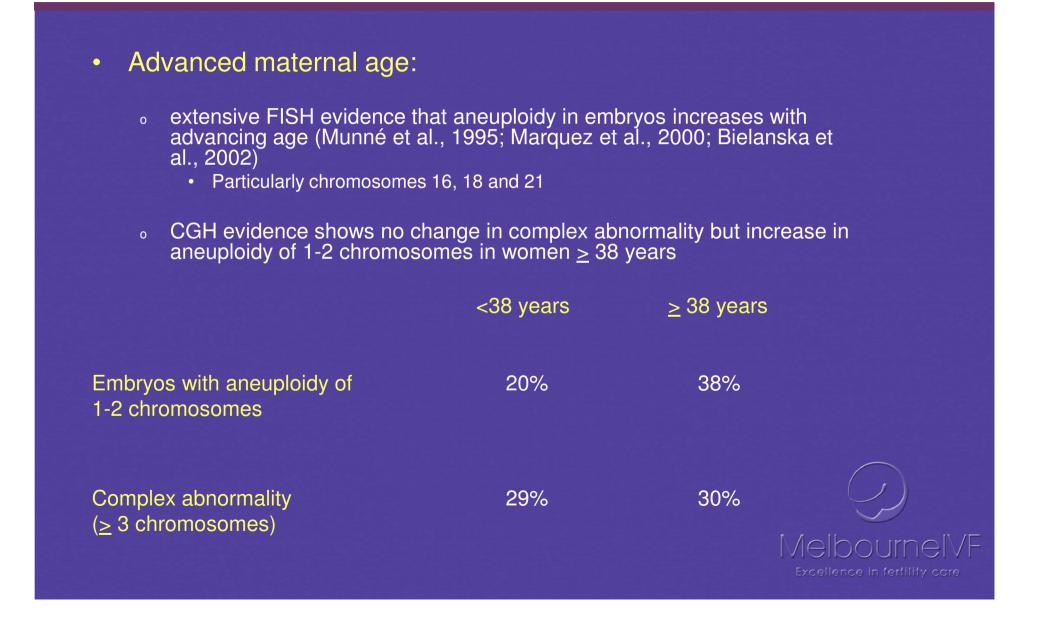
- Pronuclear morphology associated with better outcomes after IVF
- Number of studies have demonstrated correlation with of pronuclear morphology with chromosomal error
- Synchrony of pronuclei and NPBs is important

Multinucleated embryos


- 15-20% of embryos exhibit some degree of multinucleation up to day 3
- Seem to have increased frequency of error
 - Extensive mosaicism
 - Polyploidy
 - Haploidy
- Indicative of poor embryo development
 - Karyokinesis without cytokinesis

Frequency and types of chromosome error

- Most studies report 20-80% of human embryos have <u>></u> 1 chromosomal error(s)
- Meiotic error
 - Arises in gametes
 - Consistent in every cell in embryo
 - Non-disjunction, anaphase lag etc
 - o 10-20% of errors are meiotic
- Post-zygotic error
 - Mosaicism
 - Different chromosome complement in every cell
 - Complex error
 - Non-disjunction
 - Nuclear fragmentation
 - 30-60% of errors are post-zygotic



Types of chromosome error

Chromosome breakage
Identified by CGH
Accounts for ~15% of all errors seen
May be a "hotspot" on long arm of chr 2

Aetiology of infertility and chromosome error

Complex abnormality and RIF

- RIF = recurrent implantation failure
 - Criteria = \geq 10 (mean = 16) embryos transferred without pregnancy

Complex aneuploidy is not associated with AMA

 Suggestion from our earlier work that complex abnormality may be increased in RIF patients

Voullaire et al., 2007

	RIF	No RIF (RMC, AMA)	
Embryos with aneuploidy of 1-2 chromosomes	24.6%	32%	NS
Embryos with complex abnormality (<u>></u> 3 chromosomes)	31.6%	11.8%*	P=0.035

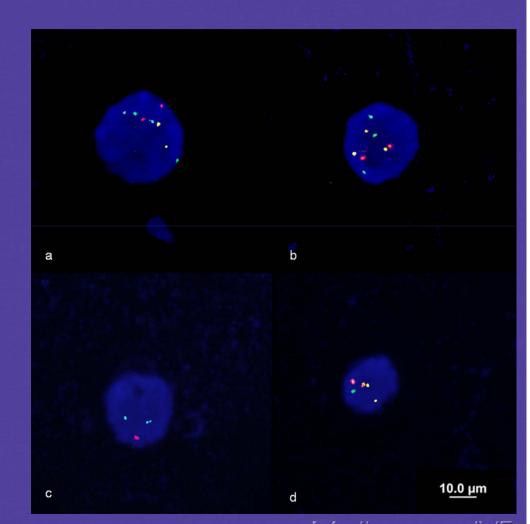
CGH data from ~100 abnormal embryos

RIF and complex abnormality

- Complex abnormality
 - Independent of maternal age
 - more likely to be associated with RIF
- Confirmed by Mantzouratou et al., 2007
 - FISH for 6 chromosomes
 - Reanalysis of 350+ embryos
- Suggestive of different cellular or molecular pathology for RIF compared to AMA/RMC
 - More generalized phenomenon
 - o Lack of cell cycle checkpoints?

Is frequent embryonic aneuploidy a human phenomenon?

- Non-primate species have low frequency of chromosome error in newborns and fetuses
 Mouse oocytes 1-2% aneuploid
- Limited data in non-human primates
 - Abnormal newborns
 - Trisomies of human homologous chromosomes 13, 18, 21 and X in chimps, baboons, rhesus, gorillas and others


Dupont et al., 2008

- Rhesus macaque preimplantation embryos
 - 50 good morphology, normally developing
 - From young, superovulated females
- FISH for chromosomes

 X, Y, 17, 18, 20
 Homologous to human X, Y, 13, 18, 16

Dupont et al., 2008

- Results
 - 。 54% normal
 - 。 22% mosaic
 - 6% chaotic
 - 4% aneuploid
 - 6% haploid
 - 8% triploid
- Mirrors patterns seen in human embryos
- Superovulation thought to adversely affect rhesus oocyte quality
- Primate model for chromosome anomalies in early development

Excellence in fertility care

Does superovulation influence aneuploidy?

• Superovulation might increase the frequency of aneuploidy in oocytes/embryos (Munné et al., 1997)

• Baart et al., 2007

- RCT of conventional vs mild stimulation found
 - Fewer oocytes/embryos
 - Lower frequency of chromosome errors
- Verpoest et al., 2008
 - Unstimulated IVF in young women
 - 36% aneuploidy (single blastomere)

Conclusion

- The past 20 years of PGD has informed us about
 - Early embryo development
 - Aetiology of infertility
- The next few years will be an exponential increase in knowledge with expanding ability to analyse all chromosomes
- Valuable because it benefits a much broader group of patients

Acknowledgements

<u>CGH collaboration</u> - Murdoch Childrens Research Institute, Melbourne

- Lucille Voullaire
- Bob Williamson

Melbourne IVF PGD scientists

- Sharyn Stock-Myer
- Pam Matthews
- Mirjana Martic
- Celine Lawler
- Peter Coleman
- Andrea Twomey
- Paisu Tang
- Anke Kohfahl
- Sophie Falle

