Obesity and PCOS

Robert Norman

The Robinson Institute for reproductive health and regenerative medicine The University of Adelaide

- Honoraria and research grants from MSD, Merck Serono, Ferring
- Travel support from ESHRE
- Grant funding NHMRC, ARC and other Australian sources

- Nutrition, obesity and reproduction
- Obesity and the egg
- The effect of obesity on PCOS
- The effect of PCOS on obesity
- Intervention strategies in PCOS and obesity

Nutrition and reproduction

Robinson Institute

An appropriate diet and fat stores are essential for healthy reproduction

Obesity and reproduction – bad synergies

Prior to pregnancy

Increases length of time to pregnancy, menstrual disorders, more drugs needed

Early pregnancy

Miscarriage, fetal anomalies

During pregnancy

Increased gestational diabetes, high blood pressure, PET, DVT, instrumental and operative delivery

Postpartum

Haemorrhage, infection, DVT

After pregnancy

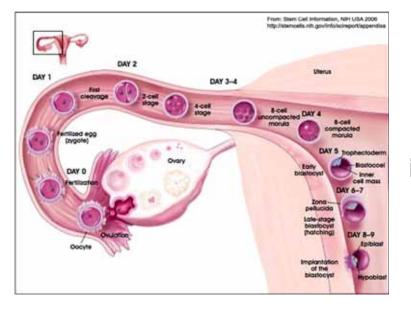
Increases diabetes mellitus, high blood pressure, endometrial cancer, cardiovascular disease, musculoskeletal problems

Obesity may lead to infertility

Green et al 1988, Zaadstra et al 1993, Rich-Edwards et al 1994, Lake et al 1997, Bolumar et al 2000, Hassan and Killick 2004, Gessink Law et al 2007

Evidence for reduced success of ovulation induction and ART in overweight women:

Wang et al 2000, Bellver et al 2003, Legro et al 2007


Evidence for increased success in reproductive outcomes in overweight women with lifestyle intervention:

UK (Franks), Italy (Pasquali), Australia (Norman), USA (Hoeger, Legro)

Extra- gonadal effects eg hyperinsulinaemia, male factor issues

Ovarian and oocyte development impairment

Uterine endometrial impairment

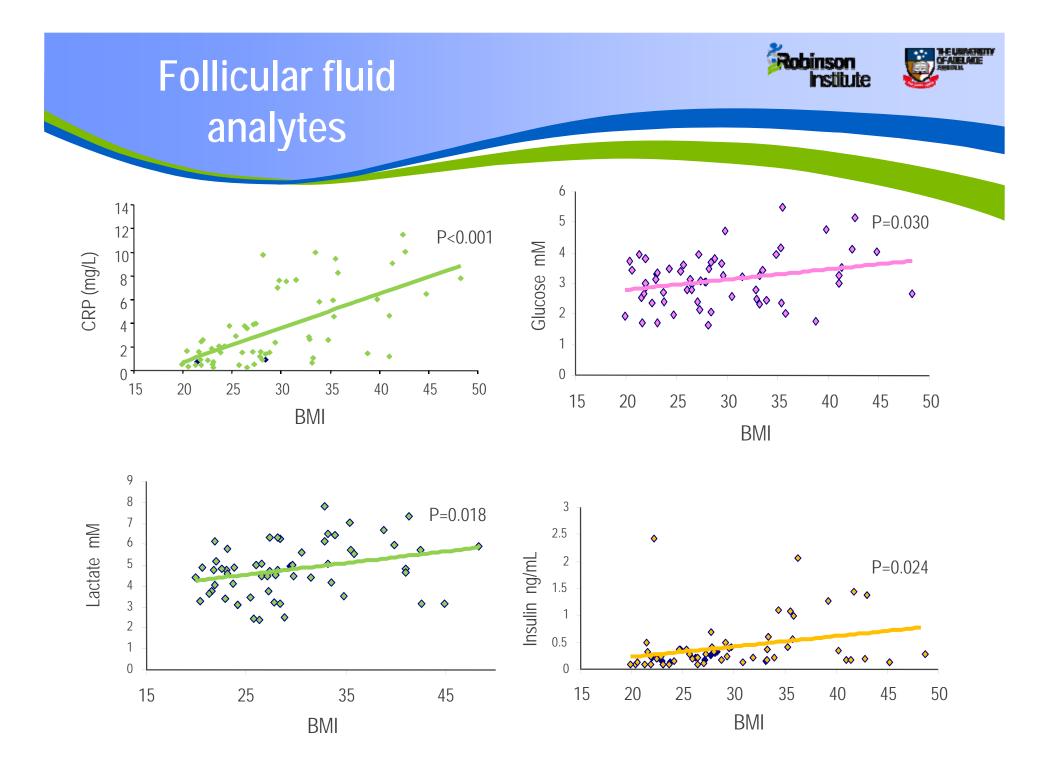
Sexual intercourse impaired by high BMI in woman or partner

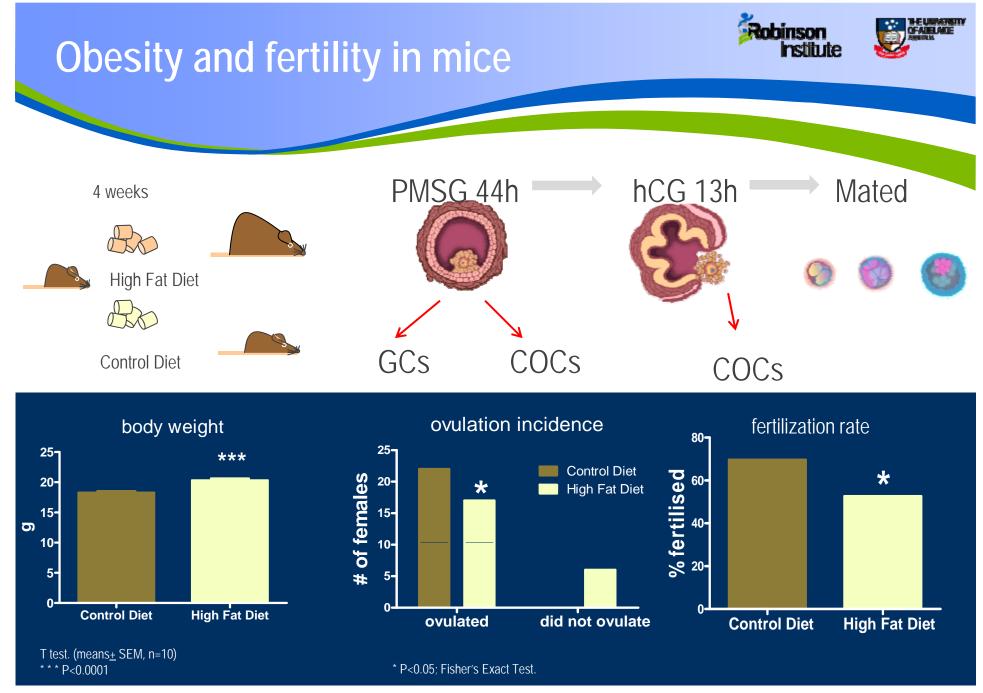
Intercourse frequency same in RM PPCOS trial Fertility and Sterility 2009

Effect of uterus vs egg on pregnancy

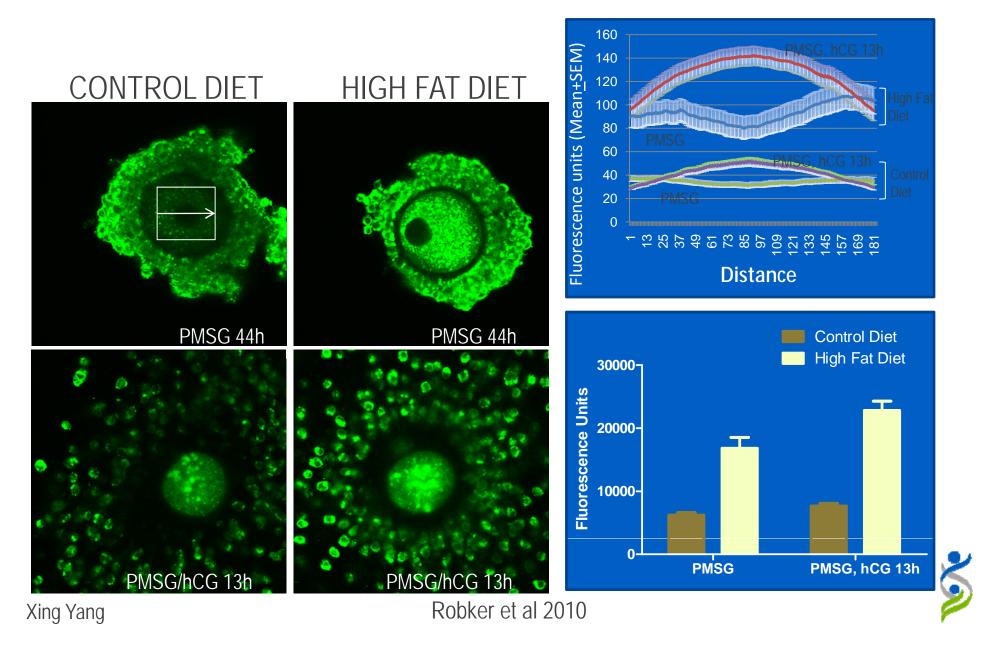
Egg donation program

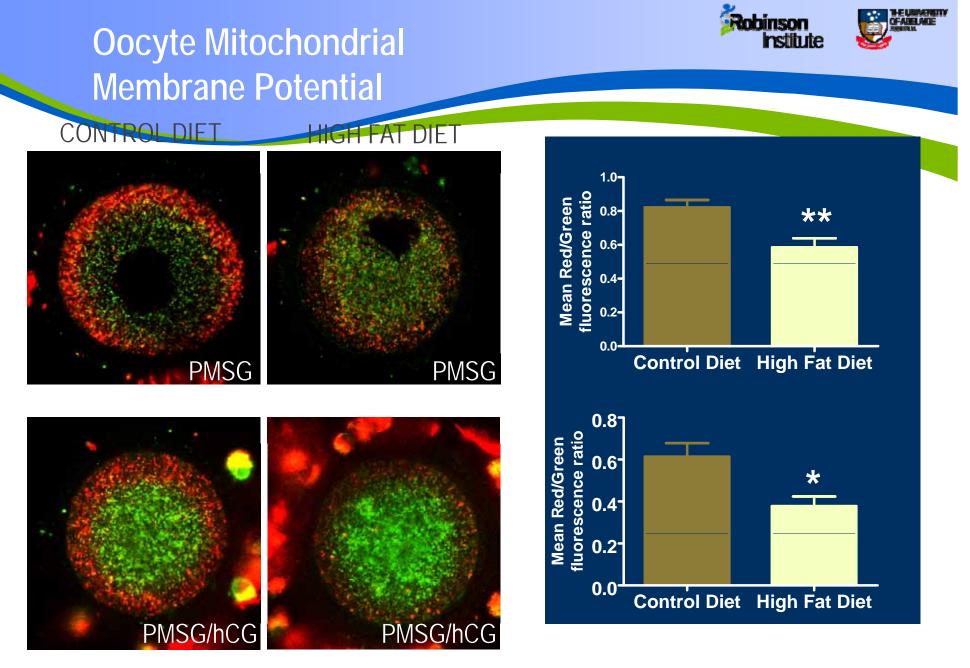
- 2656 egg donor cycles
- All donors had normal BMIs
- Recipients had different BMIs
- Allows comparison of egg vs uterine contribution
- Appears as if there is also an effect of the uterus


Pregnancy rates


Pregnancy and live birth rates reduced according to BMI of recipient

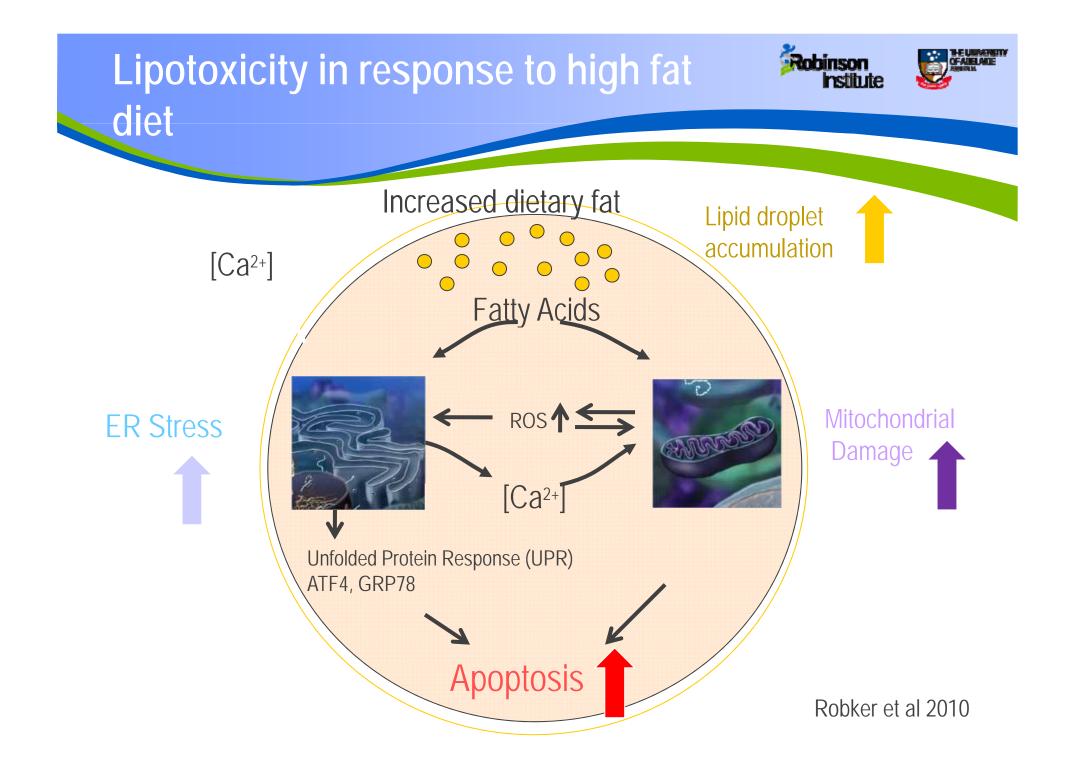
BMI	Ongoing pregnancy (%)
<20	45
20-25	45
25-29	37
>30	35


- Diet and exercise programs reducing weight by >5% lead to restoration of menstrual cycles and fertility (Kiddy et al, Clark et al, Moran et al, Pasquali et al)
- Caloric restriction more important than dietary composition (Moran et al)
- Insulin sensitisers eg metformin or PPAR agonists restore menstrual cycles and fertility despite weight (Nestler et al, Legro et al, Azziz et al, Norman et al, Zain et al)
- Associated with improved insulin sensitivity and altered body composition (Robinson et al, Huber-Bucholz et al, Pasquali et al)



Robker et al 2010

Mouse COC lipid localization



Linda Wu

Robker et al 2010

T test. (means<u>+</u> SEM, n=30) **P<0.001, *P<0.05

- Does obesity increase the prevalence of PCOS?
- Does obesity affect treatment of infertility in PCOS?
- Does obesity increase the prevalence of diabetes?
- Does obesity increase the prevalence of impaired glucose tolerance?
- Does obesity increase the prevalence of metabolic syndrome?

Prevalence of obesity in PCOS

Prevalence of overweight (BMI 25-29.9)

0

0

Oceania Americas

40

35

30

10

5

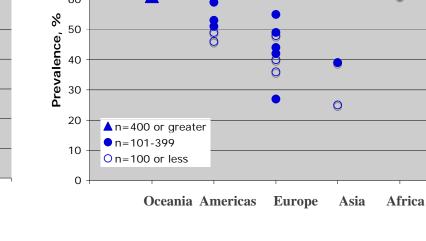
0

%

Prevalence, %

▲ n=400 or greater

• n=101-399


On=100 or less

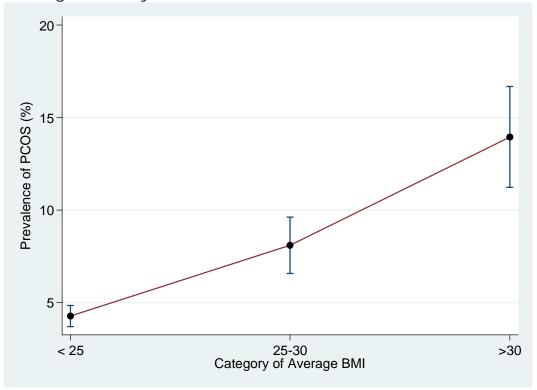
Prevalence of obesity (BMI >30)

Robinson

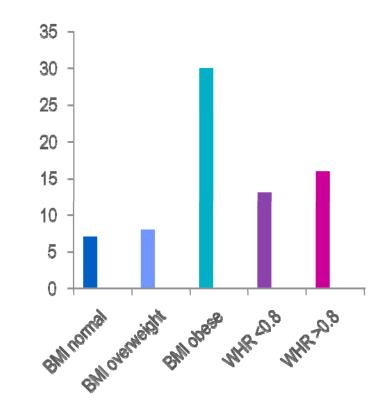
Institute

0

70 0 60 0 0 Europe Asia


80

Siew Lim unpublished


Obesity and PCOS

Prevalence of PCOS

8600 Australian women followed longitudinally

Prevalence of PCOS Aboriginal women in Australia

Robinson

Institute

Teede et al 2010

Boyle et al 2010

- Less spontaneous ovulation
- Less response to clomiphene
- Less response to gonadotrophins
- Greater danger with laparoscopic ovarian drilling
- Less pregnancies with IVF
- Worse outcomes of pregnancies
- Greater risk for long-term health of babies born

Prevalence of impaired glucose tolerance (BMI matched)

	PCOS	S	Contr	ol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% Cl
Rajkhowa 1996	10	72	1	39	6.9%	6.13 [0.75, 49.80]	1996	
Yarali 2001	1	30	0	30	2.9%	3.10 [0.12, 79.23]	2001	
Dunaif 2001	3	14	0	12	2.5%	7.61 [0.35, 163.82]	2001	
Phy 2004	4	7	2	18	3.0%	10.67 [1.31, 86.93]	2004	
Faloia 2004	3	50	1	20	8.3%	1.21 [0.12, 12.40]	2004	
Sawathiparnich 2005	0	6	3	6	20.0%	0.08 [0.00, 1.96]	2005	← ■
Diamanti-Kandarakis 2005	1	29	0	22	3.3%	2.37 [0.09, 60.96]	2005	
Alvarez-Blasco 2006	4	32	8	72	26.6%	1.14 [0.32, 4.11]	2006	_
Attuoua 2008	18	107	5	100	26.5%	3.84 [1.37, 10.79]	2008	
Total (95% CI)		347		319	100.0%	2.54 [1.44, 4.47]		•
Total events	44		20					
Heterogeneity: Chi ² = 9.97, d	f = 8 (P =	0.27); I	² = 20%					
Test for overall effect: $Z = 3.2$	22 (P = 0.0	001)						0.01 0.1 1 10 100 Lower risk for PCOS Higher risk for PCOS

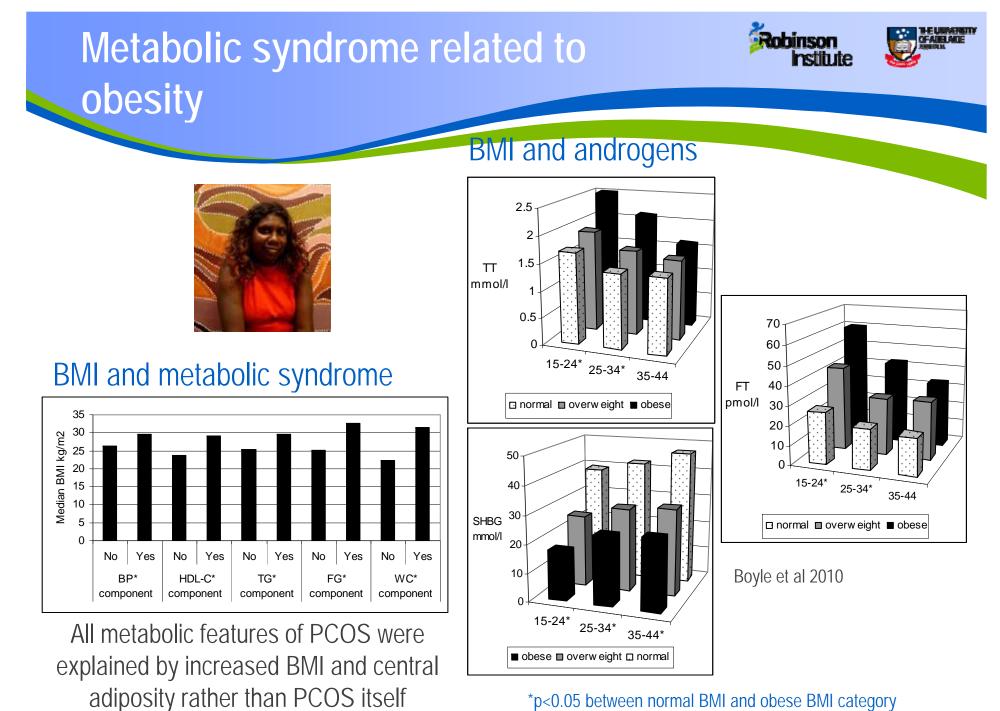
Moran et al 2010

Robinson

Prevalence of diabetes mellitus in PCOS (BMI matched)

	PCO	S	Contr	ol		Odds Ratio		(Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	Year	M-H	, Fixed, 95% Cl	
Rajkhowa 1996	2	72	0	39	9.0%	2.80 [0.13, 59.82]	1996			_
Cibula 2000	9	28	60	752	42.3%	5.46 [2.37, 12.60]	2000			
Yarali 2001	1	30	0	30	6.9%	3.10 [0.12, 79.23]	2001			—
Sawathiparnich 2005	3	6	0	6	3.6%	13.00 [0.51, 330.48]	2005			\rightarrow
Alvarez-Blasco 2006	0	32	3	72	31.1%	0.31 [0.02, 6.09]	2006			
Moini 2009	4	273	0	276	7.1%	9.23 [0.49, 172.33]	2009			→
Total (95% CI)		441		1175	100.0%	4.00 [1.97, 8.10]			•	
Total events	19		63							
Heterogeneity: Chi ² = 4.	27, df = 5	(P = 0	.51); l² = (0%				0.01 0.1		100
Test for overall effect: Z	= 3.84 (F	P = 0.00	01)					0.01 0.1 Lower risk for PC	1 10 COS Higher risk for PC0	100 DS

Moran et al 2010


Robinson

Prevalence of metabolic syndrome in PCOS (BMI matched)

	PCO	S	Contr	ol		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI Y	'ear	M-H, Fixed, 95% CI	
Faloia 2004	10	50	3	20	14.7%	1.42 [0.35, 5.80] 20	004		
Alvarez-Blasco 2006	8	32	19	72	37.6%	0.93 [0.36, 2.42] 20	006		
Shroff 2007b	6	24	4	24	12.9%	1.67 [0.40, 6.87] 20	007		
Attuoua 2008	17	107	4	100	14.9%	4.53 [1.47, 13.98] 20	800		
Gulcelik 2008	20	60	7	60	20.0%	3.79 [1.46, 9.82] 20	800		
Total (95% CI)		273		276	100.0%	2.20 [1.36, 3.56]		•	
Total events	61		37						
Heterogeneity: Chi ² = 6	6.47, df = 4	4 (P = 0	.17); l² =	38%					1000
Test for overall effect: 2	Z = 3.23 (F	P = 0.00)1)					0.001 0.1 1 10 Lower risk for PCOS Higher risk for F	1000 PCOS

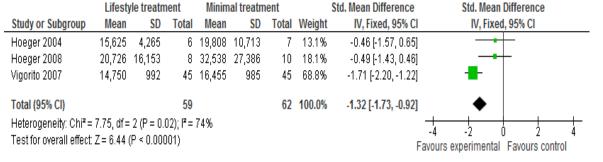
Moran et al 2010

Robinson

*p<0.05 between normal BMI and obese BMI category

- Abnormal appetite regulation (Moran et al 2007)
- Impaired quality of life and greater depression
- Added problem of insulin resistance
- Increased androgens and hirsutism
- Increased risk of menstrual disorders and cancer
- Increased risk of infertility

Intervention strategies


- Lifestyle management better than drugs
 - Few randomised trials
 - Dropouts major problem
 - Almost impossible to maintain
 - May change oocyte lipid
- Metformin addition has little value on weight
- Bariatric surgery may be required in some people

Intervention strategies

Weight		Expe	riment	al	Minima	al treatn	nent		Mean Difference	Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
	1.13.3 Weight (endpo	oint) (kg)								
	Hoeger 2008	95.2	19.2	8	94.2	19.8	10	0.7%	1.00 [-17.10, 19.10]	
	Vigorito 2007	68	3.2	45	71.5	3.9	45	99.3%	-3.50 [-4.97, -2.03]	
	Subtotal (95% CI)			53			55	100.0%	-3.47 [-4.94, -2.00]	▼
	Heterogeneity: Chi² = Test for overall effect:	•	•							
										-20 -10 0 10 20
	Test for subaroup diff	erences	: Not a:	oplicab	le				Fa	avours experimental Favours control

Weight change % Experimental Minimal treatment Mean Difference Mean Difference SD Total Mean IV, Fixed, 95% CI Study or Subgroup Mean SD Total Weight IV, Fixed, 95% CI 1.14.4 Weight (% change) Hoeger 2004 7 100.0% -7.00 [-10.10, -3.90] -6.8 3.8 6 0.2 0.8 7 100.0% -7.00 [-10.10, -3.90] Subtotal (95% CI) 6 Heterogeneity: Not applicable Test for overall effect: Z = 4.43 (P < 0.00001) -10 -5 Ó 5 10 Favours experimental Favours control Test for subgroup differences: Not applicable

Insulin with GTT

Moran et al Cochrane 2010

Robinson

- Lisa Moran for systematic reviews, Cochrane reviews
- Siew Lim for systematic reviews on obesity
- Gill Homan for reviews on interventions
- Becky Robker for lipid and egg data
- National Health and Medical Research Council for funding