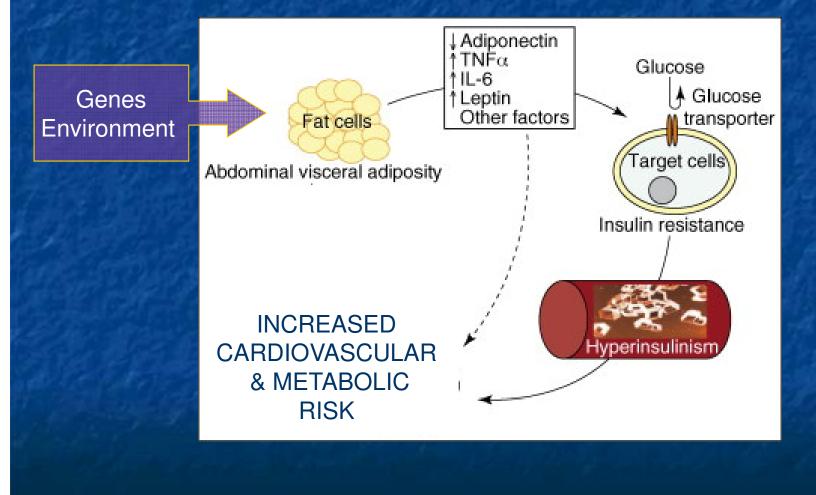

Defining Insulin Resistance and Metabolic Syndrome

Didier DEWAILLY, M.D.


Department of Endocrine Gynaecology and Reproductive Medicine, Hôpital Jeanne de Flandre, C.H.R.U., 59037 Lille, France

Insulin Resistance is a physiological, adaptative and selective phenomenon

Alan R. Saltiel and C. Ronald Kahn Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806(13 December 2001)

ADIPOTOXICITY is the main cause of pathological IR

Table 1. Current approaches for assessing insulin sensitivity and resistance in vivo					
Method	Measurement of Insulin Sensitivity				
	Direct measurements				
Hyperinsulinemic euglycemic glucose clamp IST	Steady-state GIR = M. SI _{Clamp} = M/(G $\times \Delta I$), where M is normalized for G (steady-state blood glucose concentration) and ΔI (difference between fasting and steady-state plasma insulin concentrations) SSPG concentration during constant infusions of insulin and glucose with suppressed endogenous insulin secretion				
KE ALANVU	Indirect measurements				
Minimal model analysis	Minimal model uniquely identifies model parameters that determine a best fit to glucose disappearance during the modified FSIVGTT. S _I : fractional glucose disappearance per insulin concentration unit; S _G : ability of glucose per se to promote its own disposal and inhibit HGP in the absence of an incremental insulin effect (i.e., when insulin is at basal levels)				
	Simple surrogate indexes				
Surrogates derived from fasting steady-state conditions 1/(Fasting insulin) G/I ratio HOMA QUICKI Surrogates derived from dynamic tests (OGTT)	Reciprocal of fasting plasma insulin concentration, μ U/ml Ratio of fasting plasma glucose (mg/dl) and insulin (μ U/ml) concentration HOMA-IR = {[fasting insulin (μ U/ml)] × [fasting glucose (mmol/l)]}/22.5 QUICKI = 1/[Log (fasting insulin, μ U/ml) + Log (fasting glucose, mg/dl)]				
Matsuda index Gutt index: ISI(0, 120), mg*1 ² *mmol ⁻¹ *mIU ⁻¹ *min ⁻¹	ISI(Matsuda) =10,000/√[(G _{farting (mg/dl)} × I _{fasting (mU/l)}) x (G _{mean} × I _{mean})] ISI _(0,120) = 75,000 + (G ₀ -G ₁₂₀) _(mg/dl) × 0.19 × BW/120 × G _{mean} (0, 120) (mmol/l)				
Avignon index, SiM	× Log $(I_{mean} (0, 120)) (mU/b)$ SiM = [(0.137 × Sib) + Si2 h]/2, where Sib =10 ⁸ /(I ₀ (mU/b) × G ₀ (mmsl/l) × VD) and Si2 h =10 ⁸ /(I ₁₂₀ (mU/b) × G ₁₂₀ (mmsl/l) × VD)				
Stumvoll index	$ISI_{Stameoll} = 0.156 - 0.0000459 \times I_{120 \ (pmol/l)} - 0.000321 \times I_{0 \ (pmol/l)} - 0.00541 \times G_{120 \ (mmol/l)}$				

Table 1. Current approaches for assessing insulin sensitivity and resistance in vivo

GIR, glucose infusion rate; M, glucose disposal rate; IST, insulin suppression test; SSPG, steady-state plasma glucose; FSIVGTT, frequently sampled intravenous glucose tolerance test; S_I , insulin sensitivity index; S_G , glucose effectiveness index; HGP, hepatic glucose production; G/I ratio, glucose/insulin ratio; HOMA, homeostasis model assessment; HOMA-IR, homeostasis model assessment of insulin resistance; QUICKI, quantitative insulin sensitivity check index; OGTT, oral glucose tolerance test; G_{mean} , mean plasma glucose concentration during OGTT; I_{mean} , mean insulin concentration during OGTT; G_o , plasma glucose concentration at 120 min; BW, body weight; I_o , plasma insulin concentration during fasting; I_{120} , plasma insulin concentration at 120 min; VD, glucose distribution volume (150 ml/kg BW).

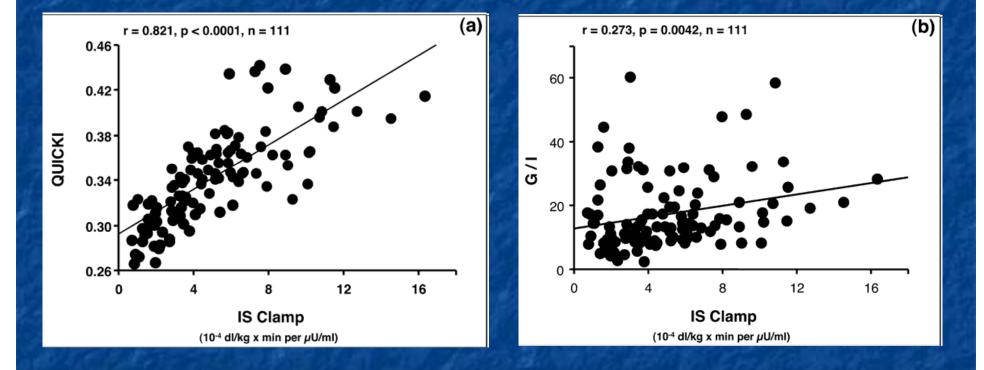
Muniyappa R et al., Am J Physiol Endocrinol Metab. 2008;294:E15-26.

Surrogate indexes of insulin sensitivity using fasting basal determinations of G and I

HOMA-IR: I (mIU/L) X G (mmol/L)/22.5

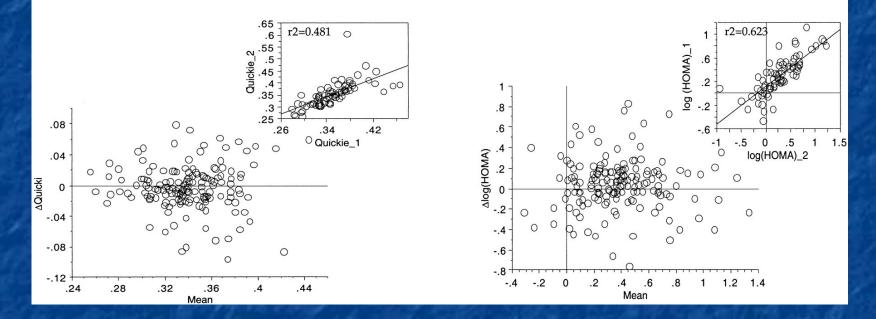
QUICKI:
 1 / log I (mIU/L) + log G (mg/dl)

G/I: G (mg/dl) / I (mIU/L)


Table II

Univariate Spearman's correlation between simple measures of insulin resistance and directly-measured insulin sensitivity by hyperinsulinemic euglycemic clamp (n = 111).

1
1
1
2
3
1


Bastard JP et al., Diabetes Metab 2003, 29:285-8

QUICKI is better than G/I

Bastard JP et al., Diabetes Metab 2003, 29:285-8

QUICKI and Log(HOMA) are similar

Mather, K. J. et al. J Clin Endocrinol Metab 2001;86:5457-5464

Surrogate indexes of insulin sensitivity

Caveats

- Depend on I assay that is not standardized
- Skewed distribution of I values (improved by log transformation)
- Not optimal in diabetic subjects (G/I)
- Not optimal in healthy insulin-sensitive subjects

Usefulness

- Epidemiological studies
- Research clinical studies (correlations)
- Follow up after therapeutic interventions

Detecting IR in clinical practice

Table 3. Familial, clinical and physical features as risks factors for IR in children and adolescents

Family history	Patient's history	Physical examination
Glucose intolerance or T2DM Overweight or obesity Hypertension Metabolic syndrome Hyperuricemia or gout Coronary heart disease Stroke Chronic pancreatitis Gestational diabetes Polycystic-ovary syndrome or hirsutism Nonalcoholic fatty liver disease	Birth weight (small or large for gestational age) Precocious pubarche Evolution of obesity Dietary habits Physical activity Medication/drugs which affect appetite, glucose or lipid metabolism	Acanthosis nigricans Striae Centripetal obesity Adipomastia Hypertension Acne Hirsutism Tall stature Precocious puberty Genu valgum

Table 4. Medications associated with IR

Hormones	HIV therapy	Antipsychotic drugs	Immune suppressants	Others
Glucocorticoids Growth hormone	HIV nucleoside reverse-transcriptase inhibitors HIV protease inhibitors	Clozapine Olanzapine Risperidone	Tacrolimus Cyclosporine A Sirolimus	Tiazides Valproate Glucosamine

Eyzaguirre F, Mericq V. Insulin resistance markers in children. Horm Res. 2009;71:65-749

The Metabolic Syndrome (MetS)

Requiescat in pace? G. Reaven 2005

The « old » definitions of MetS

Zimmet et al.

WHO 1999		EGIR 1999	ATPIII 2001
	petes or impaired glucose tolerance asulin resistance*	Insulin resistance* or hyperinsulinaemia (only non-diabetic subjects)	
Plus	s two or more of the following:	Plus two or more of the following:	Three or more of the following:
1.	Obesity: BMI > 30 kg/m² or WHR > 0.9 (M) > 0.85 (F)	 Central obesity: Waist circumference ≥ 94 cm (M), ≥ 80 cm (F) 	1. Central obesity: Waist circumference >102 cm (M), > 88 cm (F)
2.	Dyslipidaemia: Triglycerides \ge 150 mg/dl (1.7 mmol/l) or HDL-C < 35 mg/dl (0.9 mmol/l) (M) < 39 mg/dl (F) (1.0 mmol/l)	2. Dyslipidaemia: Triglycerides > 177 mg/dl (2.0 mmol/l) or HDL-C < 39 mg/dl (1.0 mmol/L)	 Hypertriglyceridaemia: Triglycerides ≥ 150 mg/dl (1.7 mmol/
3.	Hypertension: Blood pressure ≥ 140/90 mmHg or medication	 Hypertension: Blood pressure ≥ 140/90 mmHg or medication 	3. Low HDL -C: < 40 mg/dl (1.03 mmol/l) (M), < 1.29 mmol/l (50 mg/dl) (F)
4.	Microalbuminuria: Albumin excretion $\ge 20 \ \mu g/min$ or albumin:creatinine ratio $\ge 30 \ mg/g$	 Fasting plasma glucose ≥ 110 mg/dl (6.1 mmol/l) 	 Hypertension: Blood pressure ≥ 130/85 mmHg or medication
			 Fasting plasma glucose ≥ 110 mg/d (6.1 mmol/l)

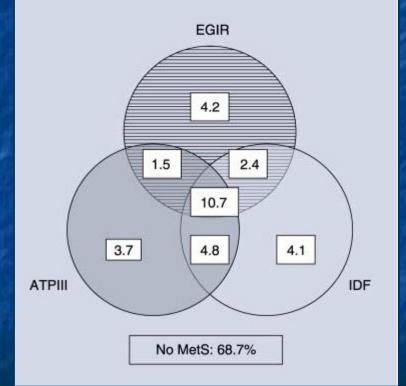
* defined as the top quartile of fasting insulin in the non-diabetic population.

296

Table 2. IDF Metabolic Syndrome World-wide Definition.

CENTRAL OBESITY Waist circumference*- ethnicity specific (Table 2)

Plus any two of the following:


- RAISED TRIGLYCERIDES:
 - ≥ 150mg/dl (1.7 mmol/l) or specific treatment for this lipid abnormality
- REDUCED HDL-CHOLESTEROL
 < 40 mg/dl (1.03 mmol/l) in males
 < 50 mg/dl (1.29 mmol/l) in females
 or specific treatment for this lipid abnormality
- RAISED BLOOD PRESSURE Systolic : ≥ 130 mmHg or Diastolic: ≥ 85 mmHg or treatment of previously diagnosed hypertension
- RAISED FASTING PLASMA GLUCOSE**
 Fasting plasma glucose ≥ 100 mg/dl (5.6 mmol/l) or previously diagnosed type 2 diabetes
 If above 5.6 mmol/l or 100 mg/dl, OGTT is strongly recommended but is not necessary to define presence of the syndrome.
- If BMI is > 30 kg/m² then central obesity can be assumed, and waist circumference does not need to be measured. Ethnic specific waist circumference are listed in table 2.

For women in western countries: 80 cm !

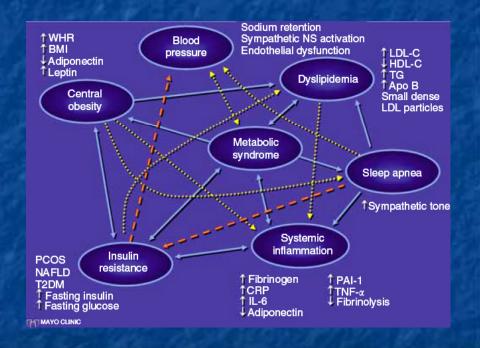
The metabolic syndrome and incidence of cardiovascular disease in non-diabetic subjects a population-based study comparing three different definitions

Nilsson PM et al., Diabetic Medicine, 2007, 24, 464–472


5,047 non-diabetic subjects (66% women), 11 years of follow-up.

	Prevalence (%)	HR* (95% CI)
MetS NCEP-ATPIII	21	1.95 (1.56-2.43
MetS EGIR	19	1.55 (1.23-1.95
MetS IDF	22	1.37 (1.09-1.72
Hypertension (A, I)	79	2.97 (1.90-4.63
Hypertension (E)	63	2.22 (1.67-2.95
Obesity (A)	15	1.81 (1.42-2.31
Obesity (E, I)	37	1.20 (0.97-1.48
Low high-density lipoprotein (A, I)	30	2.01 (1.63-2.49
Dyslipidemia (E)	21	1.65 (1.31-2.07
Hypertriglyceridaemia (A, I)	22	1.37 (1.09-1.73
Hyperglycemia (A, E, I)	14	1.39 (1.07-1.81
Insulin resistance (E)	25	1.45 (1.16-1.81
Current smoking	23	1.95 (1.55-2.45

*RR adjusted for age and sex compared with those without the risk factor. Variables included in the definition of metabolic syndrome (MetS): A, Adult Treatment Panel III (ATPIII); E, European Group for the study of Insulin Resistance (EGIR); I, International Diabetes Federation (IDF); based on criteria.


MetS as a predictor of T2DM

14

MetS: caveats

- Extremely abnormal values for any particular criterion receive the same weight as values that are barely abnormal
- Some patients may be misclassified as "normal" when indeed they have values that are close to the upper limit of normal.
- The selection of cutoff points has been arbitrary, in the most part, and not guided by biological and epidemiological principles of normality
- Not appropriate for early detection of IR in the young

Detecting IR and MetS in PCOS

Hyperandrogenism, Dysovulation

15 yrs

25-30 yrs

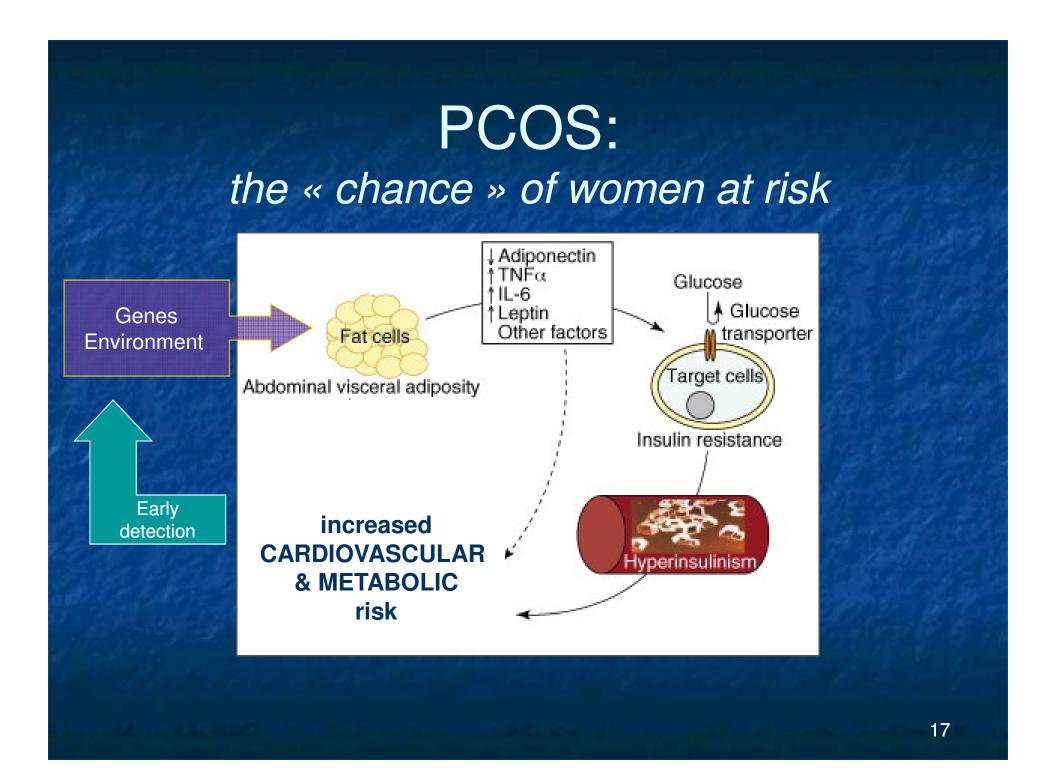
45 yrs

Metabolic Syndrome

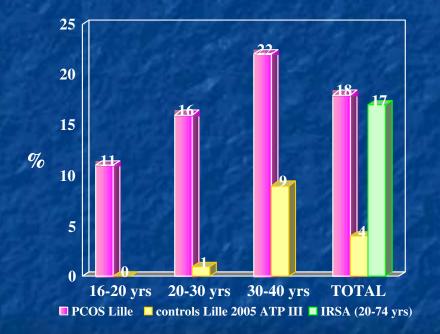
55 yrs

- Clinical hyperandrogenism

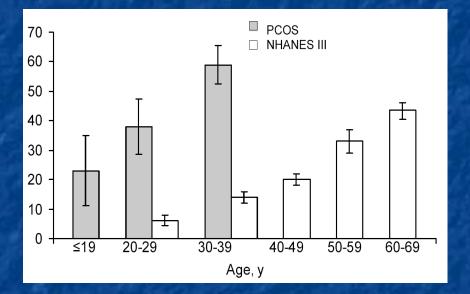
-Menstrual irregularities


- Infertility

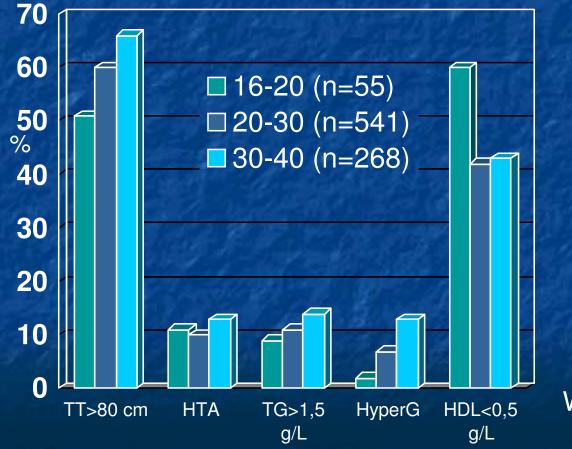
- Hyperandrogenism


Hyperandrogenism - Cardiovascular events
Glucose intolerance - Type 2 diabetes

ENDOCRINOLOGIST GYNAECOLOGIST


CARDIOLOGIST DIABETOLOGIST

% of Metabolic Syndrome in PCOS according to age

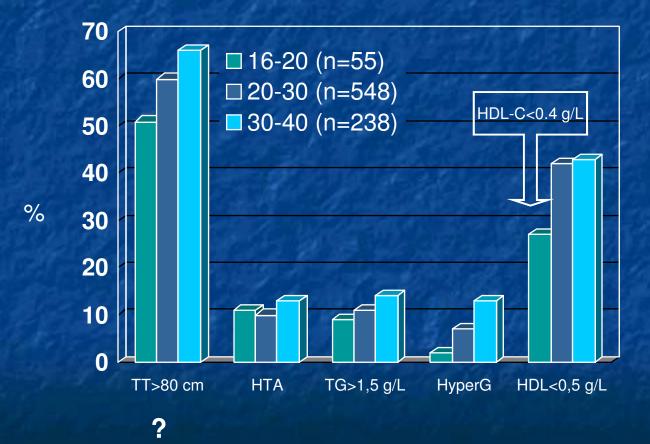


Lille Population (n=864) IDF classification Dewailly D et al. BJOG. 2009 Oct 13

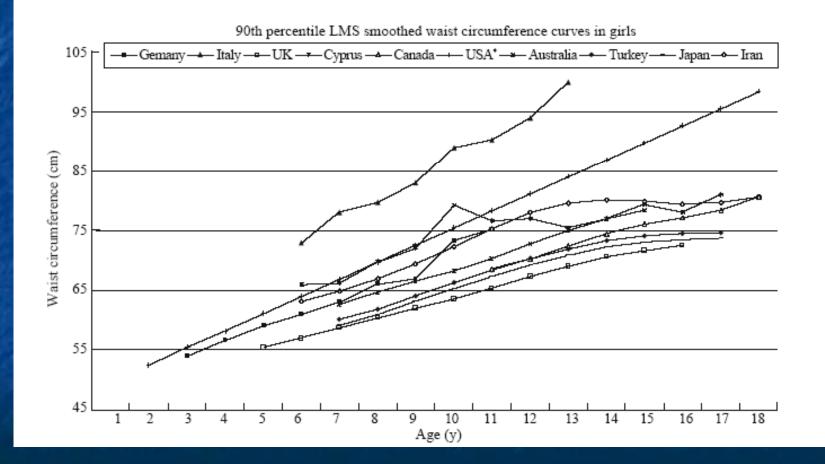
North-American Population (n=160) ATP III Classification Apridonidze T et al, J Clin Endocrinol Metab. 2005; 90: 1929 - 1935 % of each item included in MetS classification according to age in PCOS (*IDF thresholds*)

> Dewailly D, Contestin M, Gallo C, Catteau-Jonard S. BJOG. 2009 Oct 13

Wrong thresholds?


Definition of MetS in children and adolescents

Age 6 to <10 years	Age 10 to <16 years	Age ≥16 years
Obesity ≥90th percentile, as assessed by waist circumference	Obesity ≥90th percentile (or adult cutoff if lower), as assessed by waist circumference	Use existing IDF criteria for adults
Metabolic syndrome cannot be diagnosed, but further measurements should be made if the patient has a family history of metabolic syndrome, T2DM, dyslipid- emia, cardiovascular disease, hypertension or obesity	Triglycerides ≥1.7 mmol/l; HDL cholesterol <1.03 mmol/l; blood pressure ≥130 mm Hg systolic or ≥85 mm Hg diastolic; glucose ≥5.6 mmol/l (oral glucos tolerance test recommended) or known T2DM	e

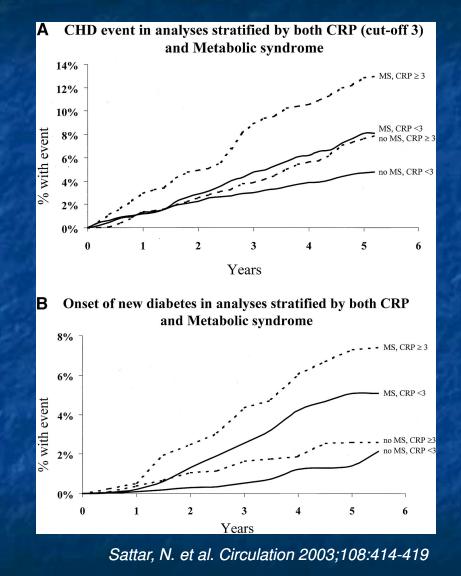

Eyzaguirre F, Mericq V. Insulin resistance markers in children. Horm Res. 2009;71(2):65-74

% of each item included in MetS classification according to age in PCOS (*IDF thresholds*)

Dewailly D, Contestin M, Gallo C, Catteau-Jonard S. BJOG. 2009 Oct 13

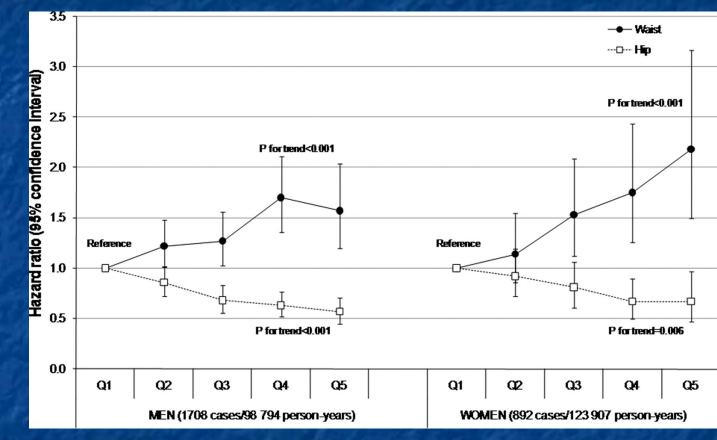
Upper normal limit for WC in adolescent girls: *similar to adults*

Waist circumference: the most cost-effective predictor for insulin resistance and CV risk


CONCLUSIONS

Detecting IR in clinical practice should rely on clinical data (WC+++);
Defining IR in clinical research can rely on simple surrogate indexes;
Stratifying patients according to the MetS yields an incomplete estimation of the CV&M risk.

CHD events and new-onset diabetes stratified by both CRP (</>=3 mg/L) and presence of absence of metabolic syndrome (MS)



Copyright ©2003 American Heart Association

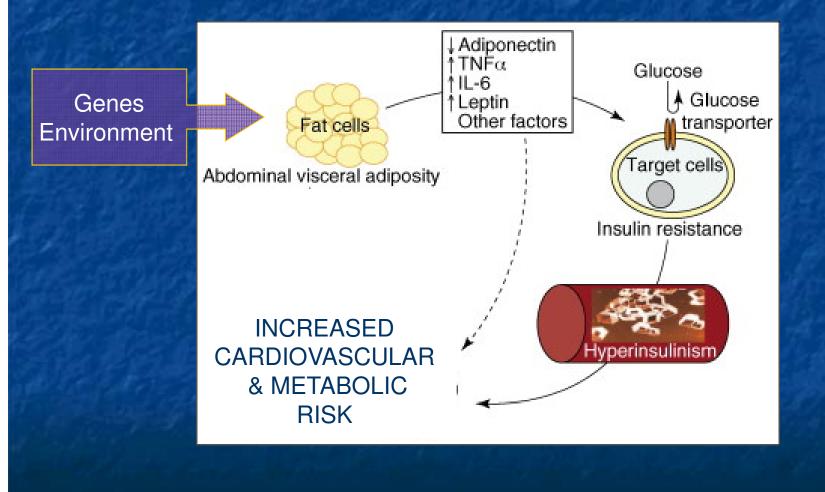
Hazard ratios for coronary heart disease by waist and hip circumference quintiles in men and women 45 to 79 years of age

with adjustment for body mass index, age, systolic blood pressure, total cholesterol, cigarette smoking, physical activity, and alcohol intake.

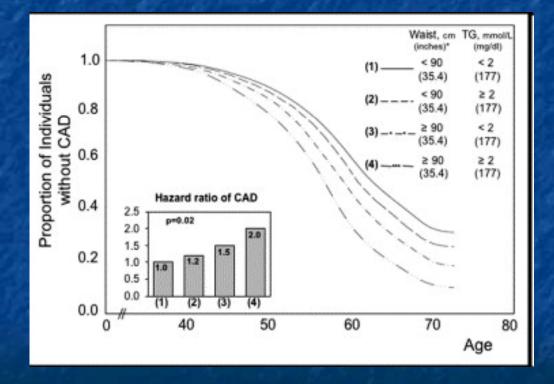
Canoy, D. et al. Circulation 2007;116:2933-2943

Avmenican Bleant

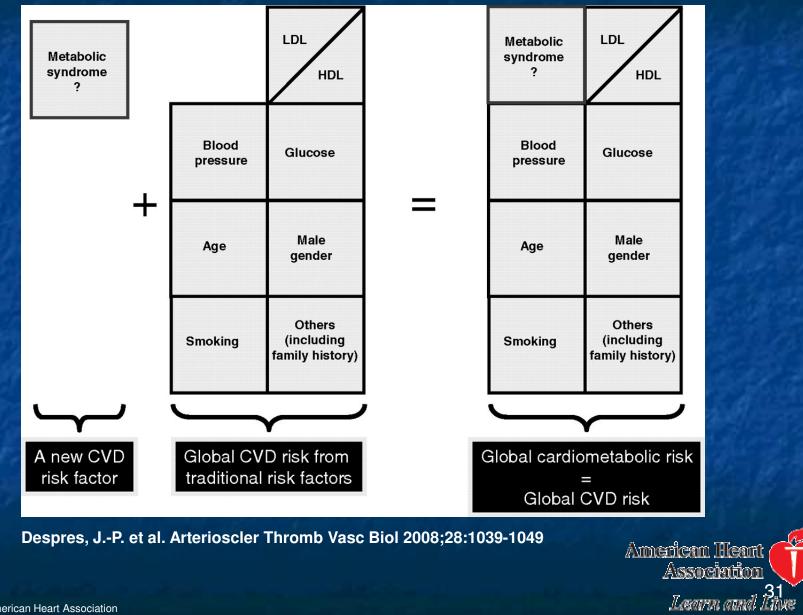
Leann and Live


Copyright ©2007 American Heart Association

Definition of MetS in children and in adolescents

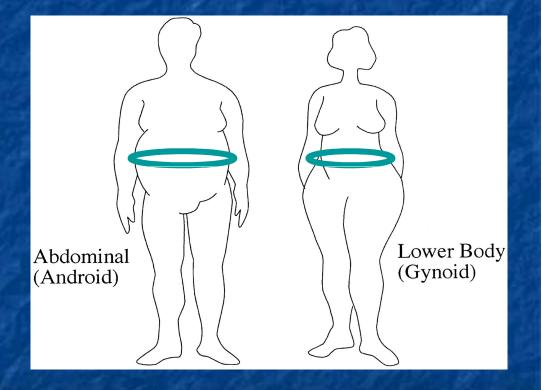

Age 6 to <10 years	Age 10 to <16 years	Age ≥16 years
Obesity ≥90th percentile, as assessed by waist circumference	Obesity ≥90th percentile (or adult cutoff if lower), as assessed by waist circumference	Use existing IDF criteria for adults
Metabolic syndrome cannot be diagnosed, but further measurements should be made if the patient has a family history of metabolic syndrome, T2DM, dyslipid- emia, cardiovascular disease, hypertension or obesity	Triglycerides ≥1.7 mmol/l; HDL cholesterol <1.03 mmol/l; blood pressure ≥130 mm Hg systolic or ≥85 mm Hg diastolic; glucose ≥5.6 mmol/l (oral glucose tolerance test recommended) or known T2DM	

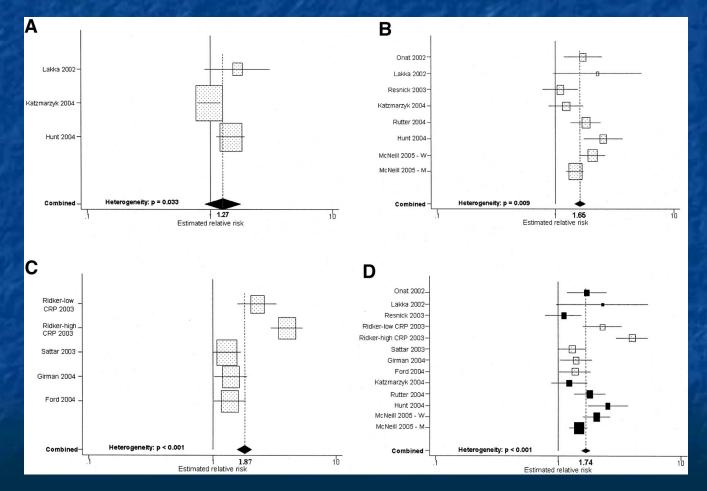
Eyzaguirre F, Mericq V. Insulin resistance markers in children. Horm Res. 2009;71(2):65-74


ADIPOTOXICITY

The hypertriglyceridemic waist phenotype

The "building blocks" of global cardiometabolic risk

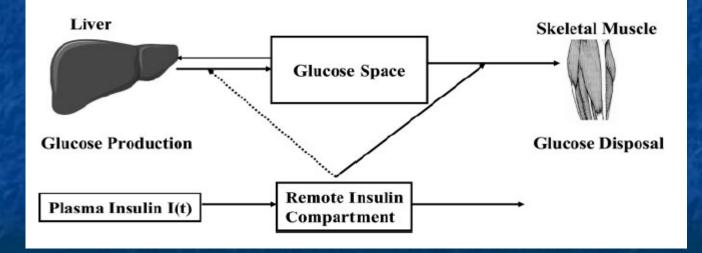



Copyright ©2008 American Heart Association

- MIRACLE score included: family history (early cardiovascular disease, type 2 diabetes, and hypertension), individual history (small for gestational age and ethnic origin), clinical features (BMI, waist circumference > 90th percentile and blood pressure > 95th percentile) and metabolic abnormalities (glucose intolerance or type 2 diabetes). It was assigned a value of 1 to "presence" and 0 to" absence" in every patient. The children were considered as having metabolic risk when at least 5 items were present. Triglycerides, HDL-cholesterol, apolipoprotein B, apolipoprotein A1, glucose and HOMA index, were measured too. The most frequent clinical features of MIRACLE score were: excess waist circumference (95.4%) and hypertension (41.8%). Family history criteria were frequent (55.3% for type 2 diabetes, 39.1% for hypertension and 31.3% for early cardiovascular disease). Individual risk factors were not frequent. Glucose intolerance was detected in 22.2% of the obese patients. A MIRACLE score > or = 5 was found in 37.4% of the children studied, being associated with a significant risk of dyslipidemia (triglycerides, p = 0.040; HDL-cholesterol, p = 0.006; LDL-cholesterol p = 0.038; apolipoprotein B, p = 0.008) only in females.
- J Physiol Biochem. 2007 Dec;63(4):347-55.
- Metabolic risk-factor clustering estimation in obese children.
- <u>Bueno G</u>,

En pratique, chez l'adolescente...

 Mesurez le tour de taille
 Dosez le HDL-C... Si vous avez une norme adaptée à l'âge!
 Oubliez le score métabolique!



Ford ES Diabetes Care. 2005;28:1769-78.

34

 $dG(t)/dt = -[p_1 + X(t)] G(t) + p_1G_b$

$$d\mathbf{X}(t)/dt = -\mathbf{p}_2 \mathbf{X}(t) + \mathbf{p}_3 [\mathbf{I}(t) - \mathbf{I}_b]$$

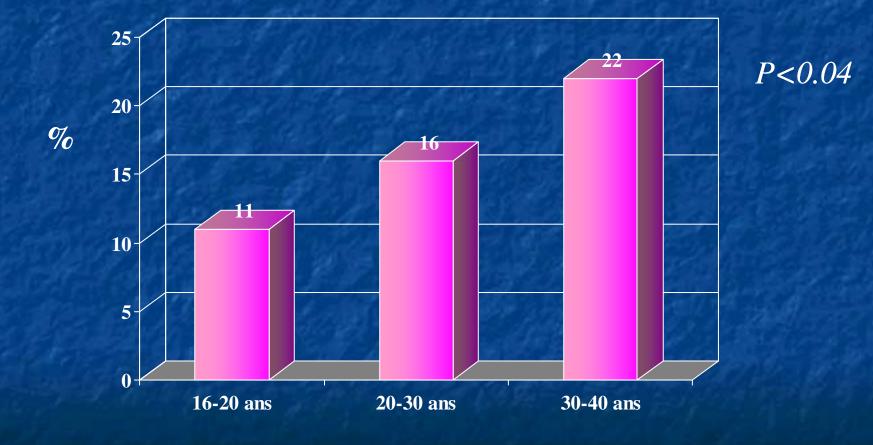
	méthodologie	difficultés	avantages	résultats
clamp euglycémique hyperinsulinique	infusion d'insuline calcul quantité de glucose à perfuser pour maintenir glycémie constante	2 abords veineux glycémie/ 5-10 min durée test et dose insuline non standardisé	méthode de référence	moyenne de la quantité de glucose infusée pdt les 30 demières minutes, en tenant compte du delta de l'insulinémie
clamp hyperglycémique	infusion de glucose pour élever la glycémie 5 à 7 mmol/l au dessus de la glycémie basale	2 abords veineux glycémie/ 5-10 min possibilité de suppression incomplète de la production hépatique de glucose, non réalisable si la GAJ est significativement élevée	mesure concomitante de la sensibilité et de la sécrétion insulinique	moyenne de la quantité de glucose infusée pendant les 30 dernières minutes du test
minimal model	infusion d'un bolus de glucose, étude de la cinétique de disparition du glucose	2 abords veineux dosage très fréquents de la glycémie souvent difficile à calculer en cas de diabète nécessité d'un programme informatique spécifique	mesure concomitante de la sensibilité et de la sécrétion insulinique	vitesse de disparition du glucose calculée à l'aide d'un programme informatique spécifique
test de suppression insulinique	infusion de glucose et d'insuline+/-agents pharmacologiques inhibant la sécrétion endogène d'insuline	2 abords veineux perfusion d'agents pharmacologiques	facile à réaliser	estimation de la sensibilité à l'insuline

Table I

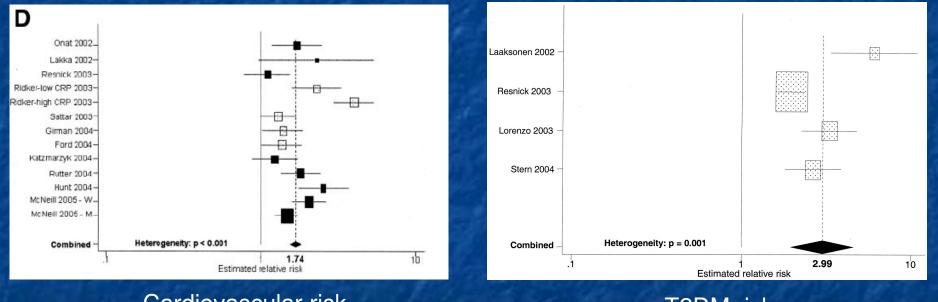
Insulin sensitivity measured by hyperinsulinemic normoglycemic clamp and by simple indexes of insulin sensitivity.

	Controls N = 28	PCOS N = 16	Obese non-diabetics N = 10	Glucose- intolerant subjects N = 28	Type 2 diabetics N = 29
BMI (kg/m ²)	22.7 ± 0.4	23.6 ± 0.8	34.5 ± 1.3	31.9 ± 0.9	30.6 ± 0.7
Glucose (mmol/l)	4.7 ± 0.1	4.6 ± 0.1	5.1 ± 0.2	6.5 ± 0.1	11.8 ± 0.6
Insulin (µU/ml)	5.5 ± 0.5	9.5 ± 1.5	13.1 ± 2.2	9.7 ± 1.0	11.8 ± 1.1
HOMA	1.16 ± 0.10	1.98 ± 0.34	2.96 ± 0.50	2.89 ± 0.36	6.06 ± 0.62
FIRI	1.04 ± 0.09	1.78 ± 0.30	2.66 ± 0.45	2.60 ± 0.32	5.45 ± 0.56
QUICKI	0.384 ± 0.006	0.353 ± 0.006	0.331 ± 0.006	0.338 ± 0.006	0.302 ± 0.004
G/I (mg/10 ⁻⁴ U)	18.4 ± 1.5	10.7 ± 0.9	8.3 ± 0.9	17.0±2.3	23.1±2.6
I/G (pmol/mmol)	7.07 ± 0.58	12.24 ± 1.90	15.63 ± 2.90	8.79 ± 0.87	6.61 ± 0.76
40/I (ml/µU)	8.88 ± 0.78	5.18 ± 0.46	3.64 ± 0.40	5.87 ± 0.78	4.27 ± 0.37
IS clamp	8.44 ± 0.55	5.45 ± 0.62	3.92 ± 0.050	3.98 ± 0.41	2.78 ± 0.36

PCOS: polycystic ovary syndrome; BMI: body mass index; HOMA: homeostasis model assessment (fasting plasma insulin [μ IU/mI] X fasting plasma glucose mmol/L])/22.5; FIRI: fasting insulin resistance index (fasting plasma insulin [μ IU/mI] X fasting plasma glucose [mmol/L])/25; QUICKI: quantitative insulin sensitivity check index (1/(log fasting plasma insulin [μ IU/mI] + log fasting plasma glucose [mg/dI]; G/I: glucose to insulin ratio; I/G: insulin to glucose ratio; 40/I: Raynaud index; IS clamp: insulin sensitivity during euglycemic hyperinsuline-mic clamp (GIR_{ss}/G_{ss} x Δ I_{ss} expressed in 10⁻⁴ dl/kg x min per μ U/mI) where GIR_{ss} is the glucose infusion rate during steady state of the clamp (mg/kg x min), G_{ss} is the steady state blood glucose concentration (mg/dI) and Δ I_{ss} is the difference between the steady state and basal insulin concentration (μ U/mI).


Table 1 Evolving definitions of the MetS 1998-2005

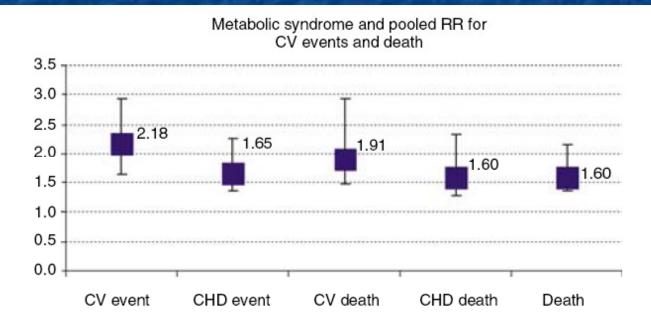
	Definition					
	WHO ⁶	EGIR ⁸	AT PIII ⁹	AACES	IDF ⁷	A HA/NHLBI ¹⁰
Criterion	1998	1999	2001	2003	2005	2005
Measure of obesity	WHR Men: > 0.90 Women: > 0.85 and/or BMI > 30kg/m ²	Waist circumference Men: ≥94cm Women: ≥80cm Specifically, BMI should not be included	Waist circumference Men: > 102 cm Women: > 88 cm	-	Waist droumference— ethnicity specific (see Table 2)	Waist circumference Men: ≥102 cm Women: ≥88cm Consider adjusting for race
TGs (mmol/l)	≥1.7	≥20	≥1.7	≥1.7	> 1.7 or spedific treatment for this abnormality	≥ 1.7 or treatment for elevated TGs (fibrates and nicotinic acid)
HDL-C (mmol/l)	Men: ≪0.9 Women: ≪1.0	<1.0	Men: <1.03 Women: <13	Men: €1.03 Warnen: €1.3	Men: ≤ 1.03 Womer: ≤ 1.3 or spedific treatment for this abnormality	Men: <1.03 Women: <1.3 or treatment for low HDL-C (fibrates and nicotinic acid)
Blood pressure (mm Hg)	≥160/90	≥ 140/90 or treatment for hypertension	≥130/85	≥ 130/85	Systolic: > 130 or diastolic: > 85 or treatment of previously diagnosed hypertension	Systolic: > 135 or diastolic: > 85 or anthypertensive treatment in a patient with a history of hypertension
Fasting plasma glucose (mmol/l)	For patients with T2DM: Fasting: >7.0 or 2-h post: >11.1 For patients with impaired glucose tolerance: Fasting: <7.0 and 2-h post: 78-11.1 For patients with impaired fasting glycemia: Fasting: 61-7.0 2-h post: <7.8	Non-diabetics only and fasting plasma glucose ≥ 6.1	≥6.1	Impaired fasting glucose (6.1-6.9) ⁴ or ≥ 7.7 after 120 min post-glucose challenge (75 g)	≥56 or previously diagnosed T2DM If above 5.6, OGTT recommended but not required	≥5.6 or on drug treatment for elevated glucose
Insulin resistance	Glucose uptake below lowest quartile for background population under investigation (assessed by clamp study)	Required Fasting hyperinsulinemia	Not required	Patients must have risk factors for insulin resistance ^b	_	Not required
Urinary protein	Microalbuminuria: ≥20µg/min Albumin/creetinine ratio ≥20mg/g	_	-	_	_	_
No. of criteria required	One of glucose intolerance, impaired glucose tolerance, or diabetes mellitus and two of either: blood pressure, dyslipidemia (TGs or HDL-C), obesity, urinary protein	Insulin resistance and two of: hyperglycemia, hypertension, dyslipidemia (TGs or HDL-C), central obesity	3 of 5 above	At least 2 of 4 metabolic abnormalities of blood pressure, plasma glucose, TGs, and HDL-C in an individual with risk factors constituting the insulin resistance syndrome	Central obesity as assessed by waist dircumference and two others above	Any 3 of 5 above


AACE, American Association of Clinical Endocrinologists; AHA/NHLBI, American Heart Association/National, Heart, Lung, and Bood institute; ATPIII, National Cholesterol Education Program—Adult Treatment Panel III; BMI, body mass index; EGIR, European Group for Insulin Resistance; HDL-C, high-density lipoprotein cholesterol; DF, International Diabetes Federation; MetS, metabolic syndrome; OGIT, oral glucose tolerance test; T2CM, type 2 diabetes mellitus; TG, trigglyceide; WHQ, World Health Organization; WHR, waist-hip ratio. This was modified in 2004 and reduced to >5.6mmol/L ^bDiagnosis of cardiovascular disease, hypertension, polycystic ovarian syndrome, non-alcoholic fatty liver disease, acarthesis nigric ans, family history of gestational diabetes or glucose intolerance, non-Caucasian ethnicity, sedentary lifestyle, BMI > 25.0 kg/m² (or waist circumference > 101.6 cm in men, > 88.9 cm in women); ages 40 years.

510

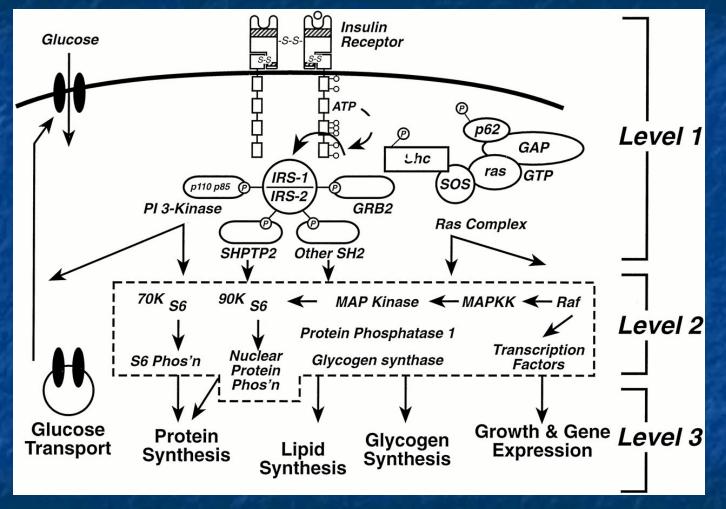
Le Syndrome Métabolique (IDF): effet de l'âge Population Lilloise (2009): 854 SOPMK

MetS: is it a good predictor of the major risks?



Cardiovascular risk

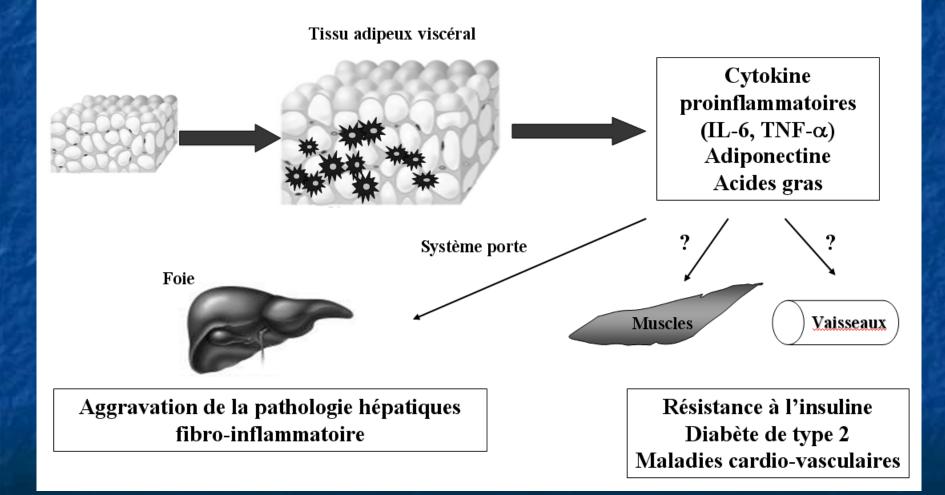
T2DM risk


Ford ES Diabetes Care. 2005;28:1769-78. 40

MetS: is it a good predictor of the major risks?

Figure 2 The pooled RR for CV events and death in patients with the metabolic syndrome. There were 11 studies examined for CV events, 18 studies for coronary heart disease (CHD) events, 10 studies for CV death, 7 studies for CHD death, and 12 studies for death. The squares on the graph represent the pooled RRs, and the bars represent the 95% confidence intervals. The data were adapted from Gami *et al.*¹³

No Caption Found



Dunaif, A. Endocr Rev 1997;18:774-800

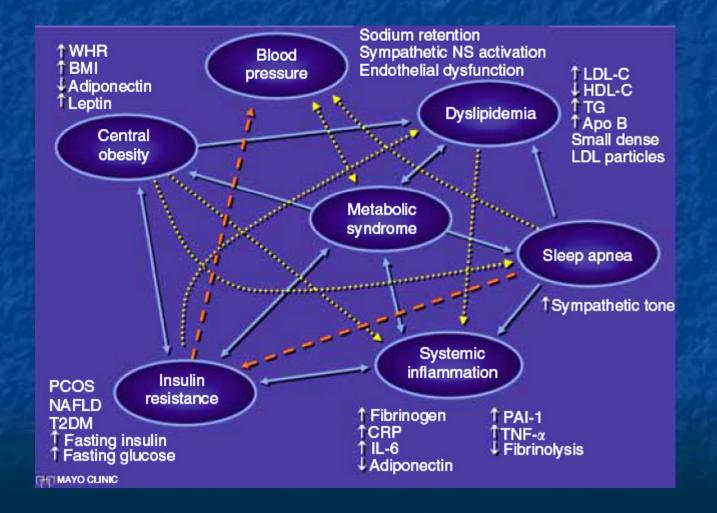

ENDOCRINE REVIEWS

Figure 3

Constitution de l'obésité et accumulation de macrophages

THE CONSTRAINT and LIMITATIONS OF DEFINITIONS...

The pitfall of arbitrary thresholds:


normal HDL-C in young women with PCOS: >0.4 or 0.5 g/L?

Dewailly D, Contestin M, Gallo C, Catteau-Jonard S. BJOG. 2009 Oct 13

Table 3. Frequencies of the metabolic items in the three subgroups

	16–20 years (<i>n</i> = 55)	20–30 years (<i>n</i> = 548)	30–40 years (n = 238)	P (chi-square test)
WC >80 cm SBP >130 mmHg and/or DBP >85 mmHg HDL-C <0.5 g/l (or <0.4 g/l)	50.9% 10.9% 60.0% (27.0%)	59.7% 10.2% 42.3%	65.7% 13% 43.3%	0.07 0.61 0.04 (0.05)
TG >1.5 g/l Hyperglycaemia*	9.1% 1.8%	42.3 % 10.9% 6.8%	43.3% 14.2% 12.7%	0.32 0.004

*Hyperglycaemia was defined by the presence of either fasting hyperglycaemia (≥1 g/l) or previously diagnosed diabetes.

