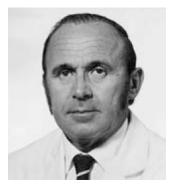
Thyroid physiology and dysfunction

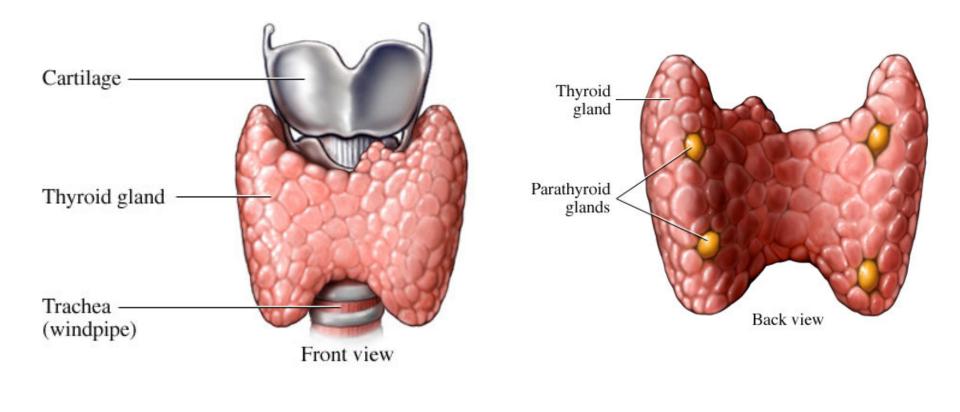
Georg Griesinger UK-SH, Campus Lübeck

Robert James Graves 1796-1853 Carl Adolph von Basedow 1799 -1854

Goitre

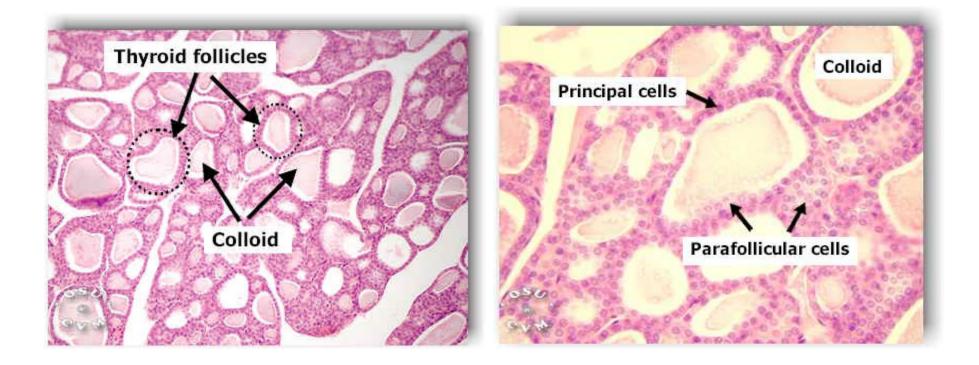
Tachycardia

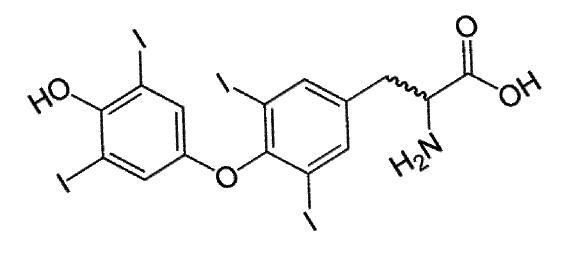

History


1886 Paul Julius <u>Moebius</u>: M. Basedow is a thyroid gland disease

1912 Hakaru <u>Hashimoto</u>: first described auto-immune thyreoditis (Struma lymphomatosa)

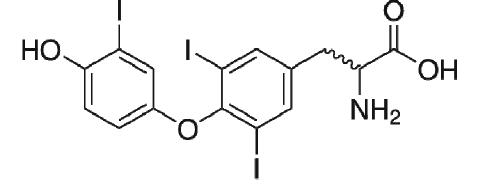
1926	Harington:	Τ4
1932	Junkmann:	TSH
1952	Gross, Pitt-Rivers:	T3
1969	<u>Schally</u> , Guillemin:	TRH


Thyroid gland


Weight: 18-60 g

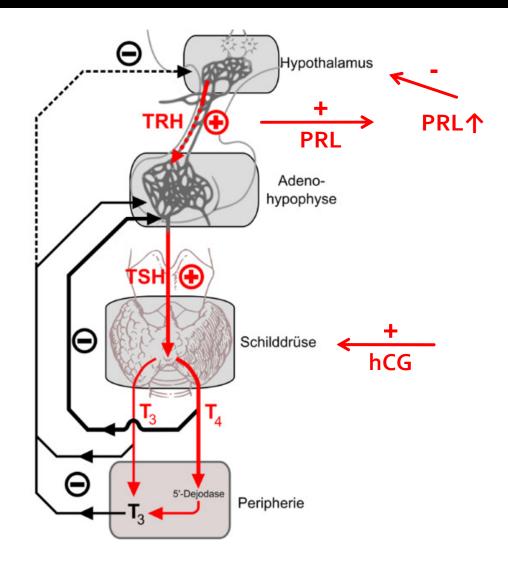
Volume: 18-25 ml

Thyroid gland: histology



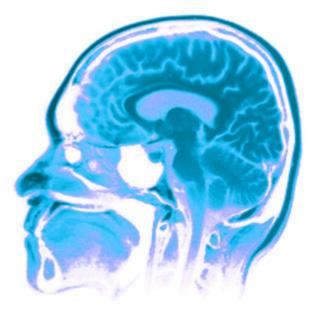
Thyroid hormones

T₄ (thyroxin)

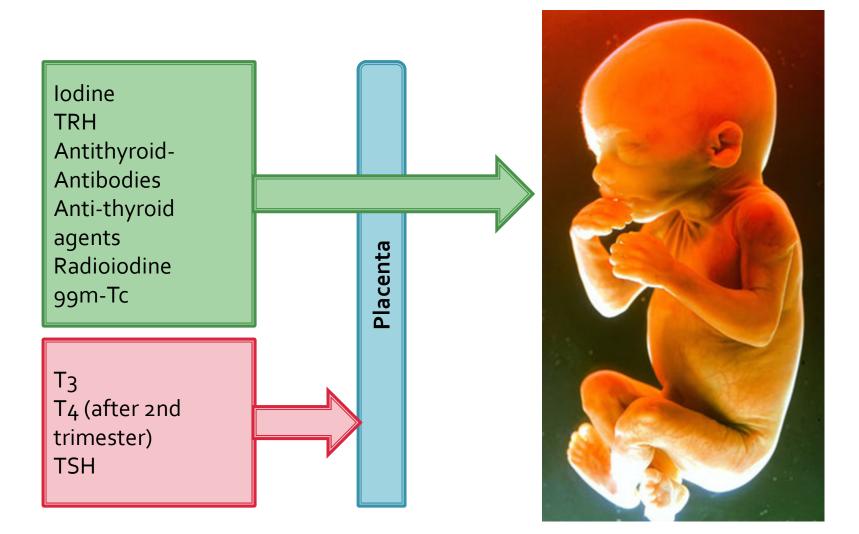


Reference ranges

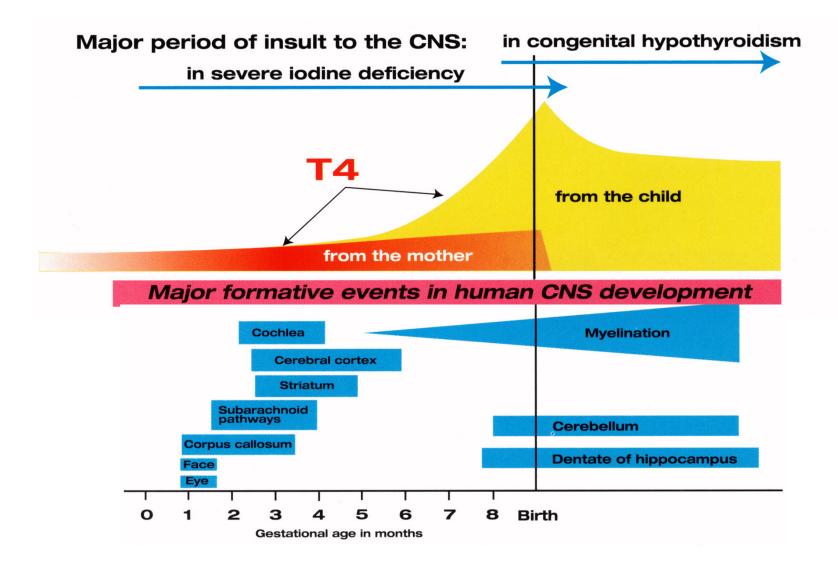
Parameter	Referenzwerte	Beschreibung
TSH	0,40–4,00 mU/ml ^a	Thyreotropin
fT4	8,0–17,0 pg/ml	Freies Thyroxin
fT3	2,00–4,20 pg/ml	Freies Trijodthyronin
TPO-AK	<35,0 U/ml Graubereich: 35,0–120,0 U/ml	Antikörper gegen thyreoidale Peroxidase
TRAK	<9,0 U/l Graubereich: 9,0–14,0 U/l	Antikörper gegen TSH-Rezeptor


a) more recently the upper reference value for TSH is 2,5 mIU/ml

Thyroid hormone feedback



Thyroid hormone effects and target organs


- Growth and development
 - crucial role in brain development during fetal life!
- Metabolism
- Catecholamine like effects

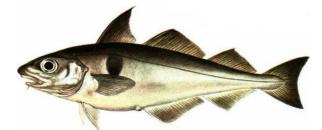
Human placental transfer

Thyroid hormones & CNS development

Neuropsychological development in children of women with hypothyreoidism

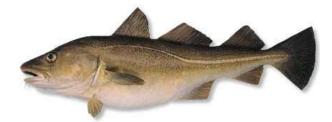
Теят	Children of Women with Hypothyroidism (N=62)	Control Children (N=124)	Mean Differencet	P VALUE
Intelligence				
WISC-III full-scale IQ score	103 ± 15	107 ± 12	-4.1 ± 2.1	0.06
WISC-III full-scale IQ score ≤85 (%)	15	5	3(1-8)	0.08
Attention				
WISC-III freedom-from-distractibility score	98±13	102 ± 13	-3 ± 2	0.08
Continuous Performance Test score >8 (%)‡	37	19	3(1-5)	0.01
Language				
Test of Language Development score				
Word articulation	10.1 ± 2.5	10.2 ± 2.4	-0.2 ± 0.4	0.80
Word discrimination	10.5 ± 2.9	11.4 ± 2.4	-0.9 ± 0.4	0.04
WISC-III verbal IQ score	103 ± 16	107 ± 16	-4.2 ± 2.2	0.06
Reading ability and school performance				
PIAT-R reading-recognition score	96 ± 14	100 ± 16	-3.8 ± 2.5	0.14
PIAT-R reading-comprehension score	98 ± 17	101 ± 17	-3.0 ± 2.6	0.20
School difficulties and learning problems (%)‡	23	11	2(1-6)	0.06
Repeated a grade (%)‡	8	4	2(0.6-7)	0.40
Visual–motor performance				
Score on Developmental Test of Visual– Motor Integration	96±13	97±11	-1 ± 2	0.40
WISC-III performance IQ score	$101\!\pm\!16$	105 ± 13	-4 ± 2	0.08
Pegboard-test score				
Dominant hand‡	86 ± 16	83±15	3 ± 2	0.10
Nondominant hand‡	94 ± 22	89±16	5 ± 3	0.10

Haddow et al., NEJM 1999


lodine requirements

	iodine (μg/d)
Baby < 4 months	40
Baby 4-12 months	80
Children 1-3 years	100
Children 4-6 years	120
Children 7-9 years	140
Children 10-12 years	180
13-50 years	200
>51 years	180
Pregnant woman	230
Lactating woman	260

Deutsche Gesellschaft für Ernährung


lodine in food

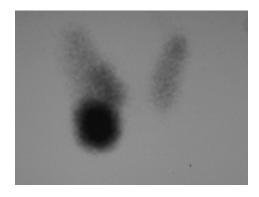
Plaice: 250 µg/100g

Haddock: 250 µg/100g

Cod: 120 µg/100g

lodine requirements in pregnancy

- Increased maternal metabolism
- Increased distributional volume
- Increased renal excretion
- Higher TBG and albumin binding of T₃ and T₄
- Higher TSH secretion
- Higher T₃ and T₄ production but also higher binding


→ pregnancy & lactation:

100 - 150µg/d supplementation

Arbeitskreis Jodmangel American Thyroid Society, 2006

Are there any risk of iodine supplementation?

 Induced hyperthyreosis in case of autonomously functioning thyroid nodules

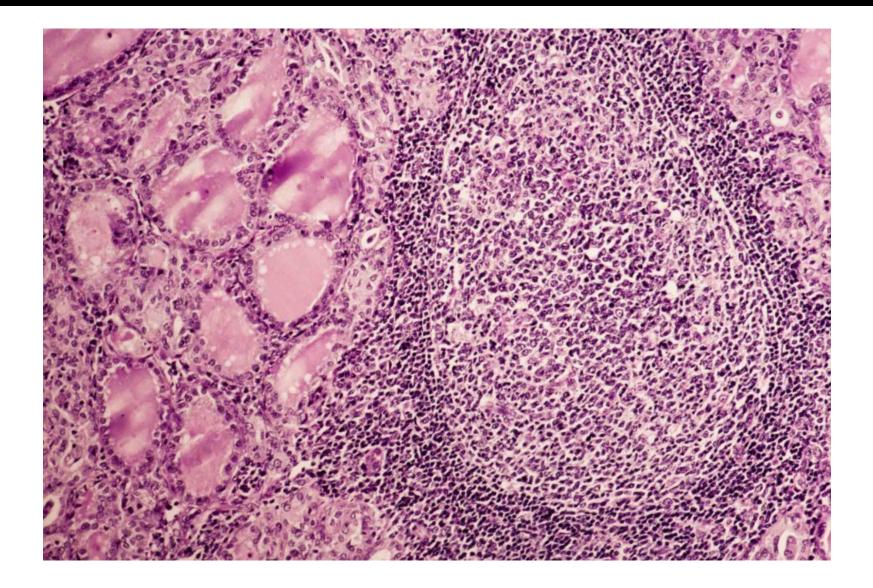
Induced hypothyreoidism in the fetus (Wolff-Chaikoff phenomenon)

But not at common (100-250µg/d) doses, "safe" up to 500µ/d (WHO)!

Overdosing of iodine

- Burger with pig thyroid glands
- Iodine solution vaginal flushing
- Excessive ingestation of algae

Avoid lack and excess of iodine in pregnancy!


Hypothyreoidism

- most common primary causes:
 - autoimmune (Hashimoto)
 - after radioiodine treatment
- Prevalence overall: 2-4%
- Prevalence women (age 18-40): 0,5-0,7%
- Subclinical hypothyroidism: TSH ↑ fT4↔
 Hypothyreoidism: TSH ↑ fT4↓

Autoimmune Hypothyreoidism

- women:men = 5-10:1
- common endocrine disease at reproductive age (prevalence 5-10%)
- Enlarged, non-tender gland
- T cells recognize the patient's own thyroid antigens as foreign. The T cells (cytotoxic) stimulate B cells to make anti-thyroid antibodies (<u>TPO & TG</u>), which block thyroid receptors
- Initially hyperthyreosis, then hypothyreosis
- Progressive, chronic disease

Hashimoto disease

Hypothyreoidism and subfertility

- TRH \uparrow \rightarrow PRL \uparrow
- \rightarrow Pulsatile GnRH release \downarrow
- \rightarrow LH release \downarrow
- \rightarrow Corpus luteum deficiency, irregular cycle

Prevalence of subclinical hypothyroidism in infertile women

Study	Study design	Prevalence of SCH in patients (% [n/total])	Prevalence of SCH in controls	Definition of SCH
Bohnet <i>et al.</i> (1981) ⁸⁰	Prospective	11% (20/185)	No controls	Basal TSH >3 mIU/l or peak TSH >15 mIU/l ^d
Gerhard et al. (1991)35	Prospective	43% (80/185) ^a	No controls	Peak TSH >20 mIU/l ^d
Shalev et al. (1994) ⁸¹	Retrospective	0.7% (3/444)	No controls	Basal TSH >4.5 mlU/l
Arojoki et al. (2000) ⁸²	Retrospective	1.3% (4/299)	2–3% ^b	Basal TSH >5.5 mlU/l
Grassi et al. (2001) ³⁷	Prospective	4.6% (6/129)	No controls	Basal TSH >4.5 mlU/l
Poppe et al. (2002) ³¹	Prospective	0.9% (4/438)	<1% ^c	Basal TSH >4.2 mlU/l
Raber et al. (2003)83	Prospective	34.0% (96/283)	No controls	Basal TSH >4 mIU/l or peak TSH >15 mIU/l ^d
Abalovich et al. (2007) ³³	Retrospective	10.2% (25/244)	1.9%°	Basal TSH >5 mIU/l

a1/185 (0.5%) patients had a basal serum TSH >6 mIU/I. ^bPrevalence in the Finnish population. ^cFertile women. ^dPeak serum TSH after thyrotropin-releasing hormone stimulation test. Abbreviation: SCH, subclinical hypothyroidism.

Risk of infertility associated with thyroid autoimmune disorder

Study and country	Thyroid antibodies	Cause of infertility	Control	Number positive for thyroid antibody (n/total)		Relative risk (95% CI)	P value
	measured			Patients	Controls	-	
Wilson <i>et al.</i> (1975), ²⁵ UK	Microsomal and thyroglobulin	OD	Age-matched, postpartum	8/77	11/77	0.7 (0.3–1.9)	NS
Roussev <i>et al.</i> (1996), ²⁶ US	Microsomal and thyroglobulin	Idiopathic, OD, endometriosis	Healthy, nonpregnant	5/63	0/15	1.2 (0.1–11)	NS
Geva <i>et al.</i> (1997), ²⁷ Israel	Microsomal and thyroglobulin	Idiopathic, tubal disorders	Age-matched, healthy, nulligravidae	15/80	2/40	3.8 (0.8–17.3)	NS
Kutteh <i>et al.</i> (1999), ²⁸ US	Peroxidase and thyroglobulin	Idiopathic, OD, tubal disorders, endometriosis	Reproductive age, parous	132/688	29/200	1.3 (0.9–2.1)	NS
Kaider <i>et al.</i> (1999), ²⁹ US	Peroxidase and thyroglobulin	Idiopathic, OD, endometriosis	Fertile	51/167	16/109	2.1 (1.1–3.9)	0.02
Reimand <i>et al.</i> (2001), ³⁰ Estonia	Microsomal	Idiopathic, OD, endometriosis	Unselected population	2/108	15/392	0.5 (0.1–2.2)	NS
Poppe <i>et al.</i> (2002), ³¹ Belgium	Peroxidase	All causes	Age-matched, fertile	61/438	8/100	1.7 (0.9–3.5)	NS
Janssen <i>et al.</i> (2004), ³² Germany	Peroxidase and thyroglobulin	OD (PCOS)	Age-matched, no PCOS	47/175	14/168	3.2 (1.9–5.6)	<0.0001
Abalovich <i>et al.</i> (2007), ³³ Argentina	Peroxidase	All causes	Age-matched, fertile	62/244	10/69	1.8 (1.0–3.2)	NS
Petta <i>et al.</i> (2007), ³⁴ Brazil	Peroxidase and thyroglobulin	Endometriosis	Fertile, no endometriosis	13/148	25/158	0.5 (0.3–1.0)	NS

Poppe et al., 2008

Thyroid autoimmunity & miscarriage

Case-control studies

Table 1 Meta-analysis of case-control studies on the association between miscarriage and the presence of antithyroid autoantibodies.

Reference	Patients No. of Ab +ve (%)	Controls No. of Ab +ve (%)	Odds ratio	95 % Cl
Pratt et al. (8)	≥3 abortions 14/45 (31 %)	Blood donors 19/100 (19%)	1.93	0.86-3.37
Bussen & Steck (9)	≥ 3 abortions 8/22 (36 %)	No abortions 3/44 (7%)	7.81	1.82-33.6
Bussen & Steck (10)	≥3 abortions 11/28 (39 %)	No abortions 2/28 (7%)	8.41	1.70-42.8
Esplin et al. (11)	≥ 3 abortions 22/74 (29%)	≥ 3 pregnancies 28/75 (37%)	0.71	0.50-1.01
Kutteh et al. (12)	≥2 abortions 158/700 (23%)	Blood donors 29/200 (15%)	1.72	1.12-2.65
Mecacci et al. (13)	≥2 abortions or ≥1 fetal death 20/51 (39%)	Unknown 10/69 (15%)	3.81	1.95-9.14
Dendrinos et al. (14)	≥ 3 abortions 11/30 (37 %)	≥1 pregnancies 2/15 (13%)	3.76	0.71-19.87
Bagis et al. (15)	≥1 abortion	No abortions	5.98	3.98-9.38
Total	298/1112 (27 %)	147/1245 (12%)	2.73	2.20-3.40

heightened autoimmune state affecting the fetal allograft, of which thyroid antibodies are just a marker?

Prummel et al., 2004

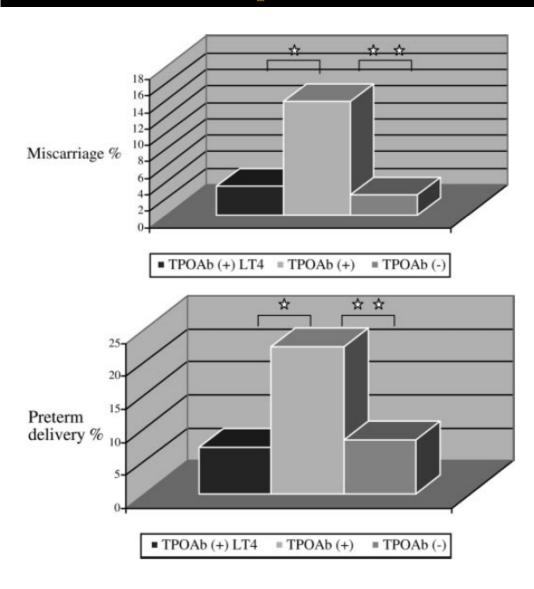
Thyroid autoimmunity & miscarriage

longitudinal studies

Table 2 Meta-analysis of prospective studies analyzing abortion rates among women with thyroid autoantibodies (Ab +ve) versus women without antibodies (Ab -ve).

Reference	Abortion rate in Ab +ve women	Abortion rate in Ab -ve women	Odds ratio	95 % CI
Stagnaro-Green et al. (16)	17/100 (17 %)	33/392 (8 %)	2.23	1.19-4.20
Glinoer et al. (17)	6/45 (13%)	20/603 (3 %)	4.48	1.70-11.81
Lejeune et al. (18)	5/23 (22%)	16/340 (5 %)	5.63	1.82-17.1
Pratt et al. (19)	8/13 (62%)	12/42 (29 %)	10.0	2.20-46.5
Singh et al. (20)	28/87 (32%)	49/301 (16%)	2.44	1.42-4.20
lijama et al. (21)	13/125 (10 %)	52/951 (5%)	2.01	1.06-3.80
Kim et al. (22)	4/10 (40%)	4/35 (11 %)	5.17	2.72-26.54
Muller et al. (23)	4/12 (33%)	8/42 (19 %)	2.13	0.51-8.87
Rushworth et al. (24)	10/24 (42%)	30/77 (39 %)	1.12	0.44-2.84
Poppo et al. (25)	0/17 (53%)	20/87 (23.%)	3.77	1 34-10 63
Total	104/456 (23 %)	336/2957 (11%)	2.30	1.80-2.95

But:


Ab+ women on average older (+0.7 years, p<0.01)

Ab+ women more often show mild thyroid failure (+0.7 IU/LTSH, p<0.01)

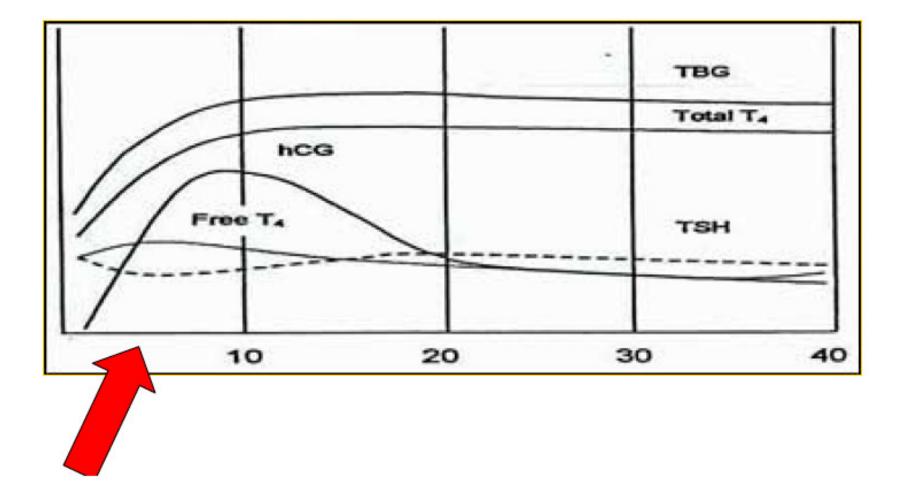
 \rightarrow RCTs needed!

Prummel et al., 2004

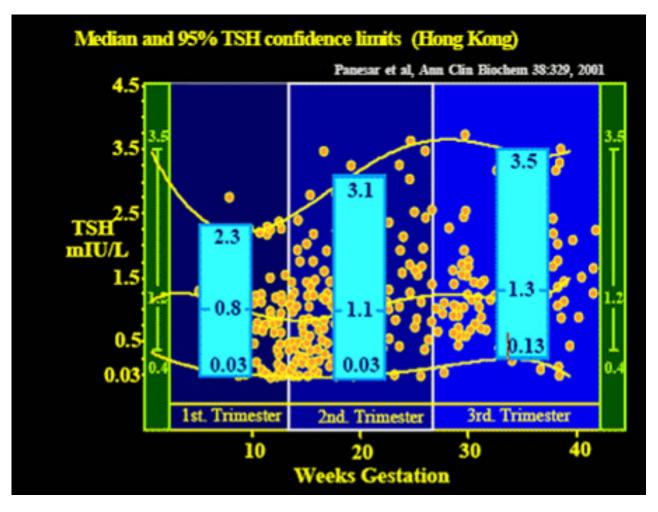
LT₄ supplementation in pregnancy in TPO+ patients

Non-randomized, prospective, interventional study:

Group A (n=57) TPO+, treated with LT4 Group B (n=58) TPO+, not treated. Group C (n=869) TPO- (control group)


Negro et al., JCEM 2006

Hypothyreoidism & subfertility: treatment

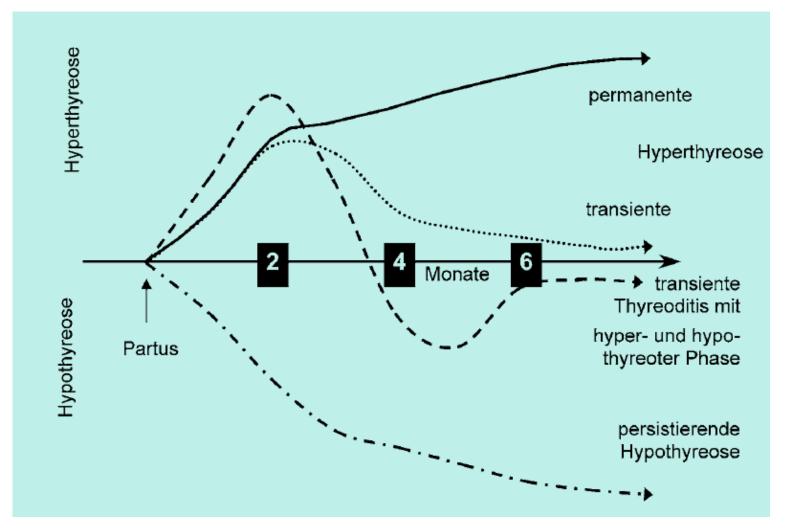

- LT4 supplementation (initiation typically 50µg/d)
- Aim: TSH 0.5-1.5 mIU/ml (1.0?) (TSH will normalize only after ~6 weeks!)
- If pregnant: control TSH, fT4, TPO-Ab at 2-3 monthly intervals

If pregnant: higher demand (30-50%) of LT4 in the course of pregnancy, peak demand reached by 16th GW, do not forget iodine, even in Hashimoto

Thyroid gland & pregnancy

TSH in pregnancy

Panesar et al., 2001


Thyroid gland & pregnancy

- Thyreotropic effect of hCG → transient mild hyperthyreosis -- thyreotoxicosis (twins, molar pregs)
- TSH reference values overall lower (0.02–2.15 mU/l vs. 0,4–4,0 mU/l)
- no generally accepted upper TSH limit
- Recommendation: TSH in 1st trimester pregnancy <2.5 mIU/l
- Beware of false diagnosis of subclinical hyperthyreoidism during pregnancy!

Postpartum thyroid dysfunction

- Prevalence: 3–8% within 6 months pp
- TPO Ab+: risk 40-60%
- TPO Ab- : risk 1:10-1:100
- Increased risk in diabetes!
- Sonography: hypodense
- Painless!
- 80% remission within 1 year
- 30% manifest hypothyreoidism
- In creased recurrence in subsequent pregnancy

Postpartum thyroid dysfunction

Meng and Ziegler, 2003

Postpartum thyroid dysfunction treatment

- Hyperthyreoidism milder than in Basedow
- Monitoring at regular intervals
- Beta-blocker in case of hyperthyreoidism
- Antithyroid drugs useless
- LT4 in case of hypothyreoidism

Hyperthyroidism (M. Basedow, Graves disease)

- Most frequently autoimmune cause (TSHreceptor Ab), rare: hCG induced or autonomous process
- TSH↓ (<0.02 mIU) fT3 ↑ fT4 ↑ or ↔</p>
- Typcially no effect on menstrual cycle

Treatment of M. Basedow

- Medical therapy
- Radioiodine therapy
- Operation (only after medical treatment)

Medical treatment of M. Basedow

	Initially [mg]	Continous daily [mg]
Thiamazol	10–15	2.5–10
Carbimazol	15–20	5–15
Propylthiouracil	200–300	50–150

Treatment of hyperthyreoidism in pregnancy and lactation

- No radioiodine!
- Thyreostatics in low doses
- Ist choice: Propycil[®]
- M. Basedow: immunomodulation of pregnancy → dose reduction often possible
- In severe cases: operation in 2nd trimester
- Aim of therapy:
 - Wellbeing of patient
 - Normal fetal development
 - Normal values of fT₃ and fT₄

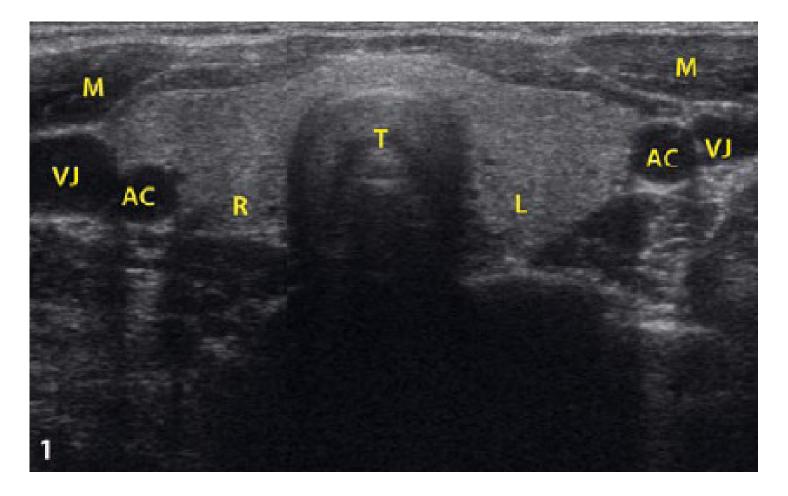

Monitoring of hyperthyreoidism in pregnancy and lactation

- fT₃, fT₄, TSH every 4-6 weeks
- Postpartum: every 3 months
- check TRAK in receptor Ab+
- Lactation: Propycil < 200-300mg/d</p>
- Intake <u>after</u> breast feeding

Hyperemesis gravidarum

- Potential danger of thyreotoxicosis!
- Always screen fT₄, TSH in hyperemesis patients!

Thyroid scintigraphy (99tm Tc)


Role: Thyroid AP

normal

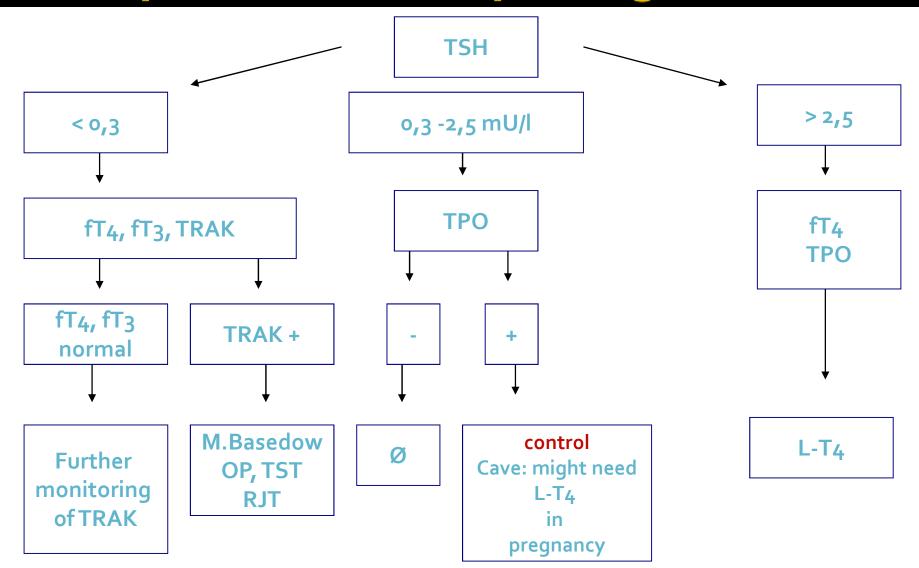
hyperthyreoidism (M. Basedow)

Distinction between focal process - adenoma - vs. diffuse process (Basedow) "Cold" nodule: carcinoma? (risk ~10%)

Thyroid sonography

Courtesy of O. Janßen, Hamburg

Fine needle aspiration



Courtesy of O. Janßen, Hamburg

Premature ovarian failure

- autoimmune etiology of POF
- frequent association with autoimmune thyroid diseases & Addison's disease described
- Implantation failure?Other?

Conclusion: Simplified lab-analysis algorithm

Conclusion cont'd

- 1. Iodine supplementation in pregnancy 100-200µg/d
- Routine screening of thyroid disorders in subfertile women, TSH <1-1.5 mU/l
- 3. Routine screening of thyroid disorders in 1st trimester
- 4. Increase LT4 dosage in pregnancy by 30-50%
- 5. Do not forget iodine in pregnancy even in TPO Ab+
- 6. Beware of post partum thyroid disorder in TPO Ab+ patients
- 7. Thyreostatic drugs and LT₄ are no contraindication to breastfeeding

griesing@uni-luebeck.de

