The role of inhibins in the regulation of the menstrual cycle and during ovarian stimulation for IVF

János Urbancsek MD, PhD, DSc

Division of Assisted Reproduction First Department of Obstetrics and Gynecology Faculty of Medicine, Semmelweis University Budapest, Hungary

Inhibin: hystorical overview

- **1923 Mottram & Cramer**
- **1932** McCullagh ("inhibin")
- **1985** Robertson et al., Ling et al. (isolation)
- **1986** Vale et al. (activin)
- **1988** Meunier et al. (placenta, adrenal, pituitary, bone marrow, kidney, spinal cord, brain)

Structure of inhibins and activins

Assays for inhibins

1972	Vale	bioassay using dispersed anterior pituitary cells
1986	McLachlan	RIA inhibin A + inhibin B + free α subunit
1993	Groome	ELISA inhibin A, inhibin B, pro-α _c , activin A, activin B

Inhibin B and inhibin A assay

- Solid phase sandwich ELISA (Oxford Bio-Innovation, Oxford, UK)
- Sensitivity: 15.0 pg/ml (inhibin B) 3.9 pg/ml (inhibin A)
- Intra- and interassay CV <20%

Regulators of follicle growth

Potentiators - Inhibitors:

Ovarian Steroids

Primary agents:

- Follicle-stimulating hormone (FSH)
- Luteinising hormone (LH)
- Prolactin

- Estrogen
- Androgen
- Progesteron
- Ovarian Peptides
 - Inhibin
 - Activin
 - Follistatin
 - Insulin-like growth factor (IGF)
 - Vascular endothelial growth factor (VEGF)

Regulators of follicle growth Potentiators and inhibitors – Ovarian peptides

Inhibin

- inhibition of FSH synthesis and release (Robertson et al. 1985)
- only complementary role in inhibition of FSH synthesis and release (McLachlan et al. 1996)
- negativ effect on aromatisation (Ying et al. 1986)

Activin

- stimulation of FSH-secretion (Ling et al. 1986)
- inhibition of FSH-secretion (periovulatory) (DiSimone et al. 1994)
- positiv effect on aromatisation (Ying et al. 1986)
- promoting mitogenesis in granulosa cell (Rabinovici et al. 1990)
- inhibition in progesterone secretion (periovulatory) (Shukovsky & Findlay, 1990)

Follistatin

- inhibition of FSH release (Ying et al. 1987)
- activin-binding protein (?) (Xaio et al. 1992)

The hypothalamus – pituitary – ovary axis

Effects of inhibin

- autocrin
- paracrin

- steroid production
- cell division
- cell differentation

/Lockwood et al (1998) /

/Lockwood et al (1998) /

Inhibin production during the spontaneous cycle

Inhibin B produced by the growing follicle Inhibin A produced by the luteinized granulosa cells

Clinical significance of inhibin B measurement

- prediction of ovarian response (Hall et al. 1999)
- prediction of IVF treatment outcome (Seifer et al. 1997)
- assessment of ovarian reserve (Klein et al. 1996)

Markers of ovarian function

indirect

- age
- basal serum FSH

Schwartz and Mayaux 1982

Muasher et al. 1988 Scott and Hofmann 1991 Navot et al. 1997

clomiphene citrate challenge test

Navot et al. 1987

> direct

inhibin B

Klein et al. 1996 Seifer et al. 1997 Welt et al. 1999 Urbancsek et al. 2001, 2002

Danforth et al. 1998

Mechanism of action of inhibin B

Aims of the study

To find out whether serum measurements

in the early follicular phase for inhibin B

or

in the midluteal phase for inhibin A

may have predictive value in view to premature ovarian insufficiency

Patients

Cases (POF) (n = 31) Controls (n = 61)

matched by

* age

* body mass index

- * number of ovaries
- * cycle length
- cause of infertility

Results I

Serum inhibin B measurements in the early follicular phase (day 3–5)

	Cases (<i>n</i> = 28)	Controls (<i>n</i> = 50)	P*
Age (years)	32 (28–34)	32 (29–34)	0.58
BMI (kg/m ²)	21.9 (19.9–23.8)	21.1 (19.8–23.6)	0.87
Cycle length (days)	28 (26–33)	29 (28–30)	0.80
Serum FSH on day 3–5 (IU/I)	23.6 (17.6–35.2)	6.4 (5.0–7.4)	<0.001
Serum inhibin B on day 3–5 (pg/ml)	13.3 (8.5–51.3)	91.9 (53.7–111.3)	<0.001

Data presented as medians (25th-75th percentiles) *Wilcoxon's matched pairs signed rank sum test

Results II

Serum inhibin A measurements in the midluteal phase (7th day after LH peak)

	Cases (<i>n</i> = 26)	Controls $(n = 45)$	P*
Age (years)	32 (28–34)	32 (29–34)	0.50
BMI (kg/m ²)	21.9 (19.9–23.8)	21.5 (19.6–23.6)	0.60
Cycle length (days)	28 (26–33)	29 (28–30)	0.72
Serum FSH on day 3–5 (IU/I)	23.6 (17.6–35.2)	6.5 (5.0–7.9)	<0.001
Serum inhibin A on 7 th day after LH peak (pg/ml)	30.5 (5.4–42.9)	25.8 (14.1–38.2)	0.88

Data presented as medians (25th-75th percentiles) *Wilcoxon's matched pairs signed rank sum test

Results I + II

Conclusions

Serum inhibin B measurements at the beginning of spontaneous cycles may have predictive value in view to premature ovarian insufficiency, while

serum inhibin A measurements in the midluteal phase do not seem to have a similar predictive value.

Inhibin A and B in patients with elevated LH/FSH

J Assist Reprod Genet (2006) (2006) 23:141-147 DOI 10.1007/s10815-006-9043-3

PHYSIOLOGY

Luteal-phase inhibin A and follicular-phase inhibin B levels are not characteristic of patients with an elevated LH-to-FSH ratio

Erik E. Hauzman · Péter Fancsovits · Ákos Murber · Thomas Rabe · Thomas Strowitzki · Zoltán Papp · János Urbancsek

J Assist Reprod Genet (2006) (2006) 23:141-147

endocrine characteristics of		ELF patients $(n = 32)$	Controls $(n = 32)$	p value ^a
patients with an elevated	Age (years)	28 (25-33)	28 (25-33)	0.24
LH-to-FSH ratio (ELF patients)	BMI (kg/m ²)	22.2 (19.8-25.1)	22.4 (20.6-24.4)	0.51
and controls	Average cycle length (days)	32 (29-41)	30 (29-32)	0.18
	FSH (IU/L)	5.4 (3.5-6.7)	6.6 (5.5-8.2)	< 0.001
	LH (IU/L)	14.6 (10.0-18.8)	4.5 (3.4-6.0)	< 0.001
Note Data are presented as	LH/FSH	2.9 (2.3-3.3)	0.7 (0.6-0.8)	< 0.001
modians and interquartile	$E_2 (pg/mL)$	51.6 (36.6-71.0)	40.5 (35.8-53.4)	0.11
(25th–75th percentile) ranges.	SHBG (nmol/L)	50.3 (28.0-61.3)	53.7 (37.8-72.5)	0.36
(25th=75th percentile) ranges.	Testosterone (nmol/L)	1.8 (0.9-2.4)	1.4 (1.1-2.5)	0.88
signed rank sum test	Inhibin B (follicular phase) (pg/mL)	123.5 (68.3-178.0)	119.1 (68.1-141.9)	0.52
^b Desults for pairs where ELE	Inhibin A (luteal phase) (pg/mL)	15.6 (5.2-32.4)	19.7 (12.3-30.9)	0.45
patients were hyperandrogene-	Testosterone (nmol/L) ^b	2.9 (2.3-4.8)	1.3 (0.9–1.7)	0.008
mic (serum testosterone > 2.1	Inhibin B (follicular phase) (pg/mL) ^b	123.1 (81.6-177.4)	92.6 (67.8-141.2)	0.29
(11101/L; n = 15 in both)	Inhibin A (luteal phase) (pg/mL)b	12.5 (5.9-24.8)	22.0 (14.1-28.4)	0.60

143

Inhibin B during ovarian stimulation Inhibin B in serum

rises during follicular stimulation for IVF

Lockwood et al. 1996 Elting et al. 2001

 may predict ovarian response for gonadotrophin stimulation

Seifer et al. 1997

Urbancsek et al. 2001, 2005 🧲

may predict pregnancy outcome

Hall et al. 1999 Penarubbia et al. 2000 Creus et al. 2000 Urbancsek et al. 2001

Serum inhibin B levels before start of gonadotrophin treatment can predict ovarian response in combined GnRH analogue + gonadotrophin stimulation

Urbancsek J., Hauzman E., Murber Á., Klinga K., Rabe T., Strowitzki T., Papp Z. *Hum Reprod 16 (2001) (Abstract book 1) 149-150*

Serum CA-125 and inhibin B levels in the prediction of ovarian response to gonadotrophin stimulation in IVF cycles (Urbancsek et al. Gynecol. Endocrinol. 2005)

	Poor responders	Normal responders	p Value
Age (years)	36.5 (34.5-43.5)	36.5 (34-42.5)	NS
BMI (kg/m ²)	23.3 (19.6-26.1)	22.8 (20.1–25.2)	NS
FSH basal (IU/l)	7.5 (5.4-8.8)	7.8 (6.6-8.3)	NS
E ₂ basal (pg/ml)	51.6 (37.2-65.2)	47.1 (40.1–53.9)	NS
Length of down-regulation (days)	16.5 (13.5–18)	15.5 (13–19.5)	NS
Length of stimulation (days)	12 (10.5–12.5)	10.5 (9–11)	0.002
No. of gonadotropin ampoules	51 (38.5–58)	25 (20.5-37.5)	0.001
E ₂ on SD1 (pg/ml)	25.5 (18.4-37.8)	35.6 (25.3-57.5)	NS
Inhibin B on SD1 (pg/ml)	10.9 (9.4–16.1)	38.0 (23.6-71.8)	0.004
CA-125 on SD1 (U/ml)	15.6 (13.2–22.3)	22.6 (18.2-26.6)	NS
E_2 at OI (pg/ml)	516.0 (369.5-705.5)	2630 5 (2096 0-2807 0)	0.0004
Inhibin B at OI (pg/ml)	177.8 (143.2-266.1)	805.9 (554.5-988.6)	0.002
CA-125 at OI (U/ml)	13.3 (10.4–16.4)	17.9 (11.7-24.5)	NS
Inhibin B at OPU (pg/ml)	70.9 (29.3-129.7)	242.1 (192.3–567.2)	0.028
CA-125 at OPU (U/ml)	15.9 (11.9–18.8)	14.4 (7.5–18.8)	NS
No. of oocytes retrieved	1 (0-2)	8 (7-9)	0.0004
No. of embryos replaced	0 (0-2)	4 (4-4)	0.0004

Table I. Clinical and endocrine characteristics of poor and normal responders.

BMI, body mass index; FSH, follicle-stimulating hormone; E₂, estradiol; SD1, stimulation day 1; OI, ovulation induction; OPU, oocyte pick-up; NS, not significant; data are median with interquartile range in parentheses; all statistical tests are paired.

Inhibin B in serum

rises during follicular stimulation for IVF

Lockwood et al. 1996 Elting et al. 2001

 may predict ovarian response for gonadotrophin stimulation

> Seifer et al. 1997 Urbancsek et al. 2001, 2005

may predict pregnancy outcome

Hall et al. 1999 Penarubbia et al. 2000 Creus et al. 2000 Urbancsek et al. 2005

Aims of the study

To find out whether inhibin B measurements performed before and after gonadotropin stimulation for *in vitro* fertilization (IVF) and embryo transfer (ET)

- may be indicative of pregnancy
- can predict pregnancy outcome

Patients

Cases (*n* = 55) 'Pregnant' group Controls (*n* = 55) 'Non-pregnant' group

matched by

age
 type of sterility
 serum E₂ level on day of hCG
 number of oocytes retrieved
 number of embryos transferred

TABLE 1

Clinical and endocrine characteristics of pregnant and nonpregnant patients.

	Pregnant group	Nonpregnant group	Р
Age (y) ^a	31.6 ± 4.0	31.4 ± 3.7	NS
BMI (kg/m ²) ^a	23.1 ± 3.3	22.4 ± 3.0	NS
Main infertility factor (n (%))			NS
Male factor	15 (27)	10 (18)	
Tubal factor	32 (58)	36 (65)	
Endometriosis	2 (4)	6 (11)	
Unexplained	6 (11)	3 (6)	
Treatment (n (%))		. ,	NS
IVF	43 (78)	46 (84)	
ICSI	12 (22)	9 (16)	
FSH basal (IU/L) ^a	7.0 ± 2.3	6.6 ± 2.1	NS
E ₂ basal (pg/mL) ^a	46.7 ± 19.3	47.9 ± 23.6	NS
Days of stimulation ^a	10.8 ± 1.3	10.5 ± 1.3	NS
Ampules of gonadotropins ^a	30.3 ± 14.3	27.9 ± 10.6	NS
E ₂ on day 1 of stimulation (pg/mL) ^b	35.6 ± 14.7	40.2 ± 19.6	NS
Inhibin B on day 1 of stimulation (pg/mL) ^b	22.0 ± 17.5	28.6 ± 22.7	NS
E ₂ on day of OI (pg/mL) ^a	2,285 ± 1,036	2,272 ± 1,109	NS
Inhibin B on day of OPU (pg/mL) ^c	299 ± 195	228 ± 150	.022
No. of oocytes retrieved ^a	$(.2 \pm 2.2)$	1.1 ± 2.3	NS
No. of embryos replaced ^a	3.5 ± 0.8	3.5 ± 0.7	NS

Note: Data are mean ± SD. All statistical tests are paired. BMI = body mass index; OI = ovulation induction; OPU = oocyte pickup; NS = not significant.

^an = 55 for both groups.

 $^{b}n = 40$ for both groups.

^cn = 46 for both groups.

Urbancsek. Inhibin B to predict IVF outcome. Fertil Steril 2005.

FIGURE 1

Receiver-operating characteristic (ROC) curve for the prediction of the establishment of clinical pregnancy by inhibin B on day of oocyte pickup (area under the ROC curve = 0.63). The *arrow* indicates the optimal cut-off point (\geq 216 pg/mL) for differentiating between pregnant and nonpregnant cycles.

Pregnancy outcome

- Early pregnancy loss (≤12 weeks)

 first trimester abortions
 ectopic pregnancies
- Viable pregnancies (>12 weeks)
 - singleton ongoing pregnancies
 - multiple ongoing pregnancies

TABLE 3

Comparison of patients with different pregnancy outcomes.

	Early pregnancy losses (n = 9)	Ongoing pregnancies (n = 56)	P ^a	Singleton ongoing pregnancies (n = 30)	Multiple ongoing pregnancies (n = 26)	P ^b
E ₂ on day 1 of stimulation (pg/mL)	37.4 ± 9.2	36.2 ± 15.0	NS	33.7 ± 14.5	38.9 ± 15.4	NS
Inhibin B on day 1 of stimulation (pg/mL)	19.6 ± 11.1	23.0 ± 18.1	NS	25.1 ± 19.8	20.8 ± 16.4	NS
E ₂ on day of OI (pg/mL)	2,203 ± 950	2,404 ± 1,032	NS	2,639 ± 1,158	2,077 ± 736	NS
Inhibin B on day of OPU (pg/mL)	307 ± 147	276 ± 195	NS	282 ± 204	270 ± 188	NS
No. of oocytes retrieved No. of embryos replaced	7.2 ± 1.6 3.8 ± 0.7	7.2 ± 2.3 3.5 ± 0.7	NS NS	7.5 ± 2.3 3.5 ± 0.8	6.8 ± 2.2 3.6 ± 0.7	NS NS

Note: Beside 55 patients with matched nonpregnant pairs, 10 additional pregnant patients without matched pairs were also included for these analyses. Data are mean ± SD.

^aP values for comparison between early pregnancy losses and ongoing pregnancies.

^bP values for comparison between singleton and multiple ongoing pregnancies.

Urbancsek. Inhibin B to predict IVF outcome. Fertil Steril 2005.

Conclusions I.

Serum inhibin B measurements before gonadotropin stimulation do not have predictive value in view to

- treatment outcome
- pregnancy outcome

Conclusions II.

Serum inhibin B measurements on the day of oocyte pick-up do have predictive value in view to

treatment outcome

independently of

age peak E2 oocyte number number of transferred embryos

Clinical significance of inhibin A measurement

• prediction of early pregnancy outcome (Clifford et al. 1997, Urbancsek et al. 2000, Hauzman et al. 2004)

- early prediction of preeclampsia (Muttukrishna et al, 1997)
- screening for Down-syndrome (Wald et al, 1996)
- follow-up of trophoblast deseases(Minami et al, 1993)
- diagnosis and follow-up of ovarian cancer (Lappöhn et al, 1989)

Aims of the study

To find out whether inhibin A measurements performed around two weeks after in vitro fertilization (IVF) and embryo transfer (ET)

- may be indicative of pregnancy
- can predict various pregnancy outcomes

Patients

- pregnant cycles: 176 consecutive IVF/ICSI pregnancies
- controls: 50 non-pregnant cycles of the same patients
- cause of infertility:

Pregnancy outcome

- Early pregnancy loss (≤12 weeks)
 - preclinical abortion (biochemical pregnancy)
 - first trimester abortion
 - ectopic pregnancy
- Ongoing pregnancy (>12 weeks)
 - singleton ongoing pregnancy
 - multiple ongoing pregnancy

Inhibin A in early IVF pregnancies Serum inhibin A levels in pregnant and non-pregnant IVF cycles

Serum inhibin A levels in pregnant and non-pregnant IVF cycles

Non-pregnant cycles $(n = 50)$	Pregnant cycles $(n = 176)$		
4.3	53.8		
(2.4 - 10.8)	(11.5 – 125.4)		
pg/ml*	pg/ml*		
<i>P</i> < 0.0001**			

* Data presented as medians (25th-75th percentiles)
**Wilcoxon's matched pairs test

Inhibin A in early IVF pregnancies Serum inhibin A levels in biochemical and clinical IVF pregnancies

Serum inhibin A levels in biochemical and clinical IVF pregnancies

Biochemical pregnancies $(n = 25)$	Clinical pregnancies (<i>n</i> = 151)			
5.3 (3.3 – 11.5) pg/ml*	70.4 (22.5 – 155.0) pg/ml*			
<i>P</i> < 0.0001**				

* Data presented as medians (25th-75th percentiles)
**Mann-Whitney U test

Inhibin A in early IVF pregnancies Serum inhibin A levels in early pregnancy loss and ongoing pregnancies

Serum inhibin A levels in early pregnancy loss and ongoing pregnancies

Early pregnancy loss ^a (n = 16)	Ongoing pregnancies ^b (n = 135)			
33.2	73.1			
(4.5 - 61.1)	(25.1 - 159.3)			
pg/ml ^c	pg/ml ^c			

^aClinical pregnancy ≤ 12 weeks
^bClinical pregnancy > 12 weeks
^cData presented as medians (25th-75th percentiles)
^dMann–Whitney *U* test

Serum inhibin A levels in singleton and multiple pregnancies

Serum inhibin A levels in singleton and multiple pregnancies

Singleton pregnancies $(n = 88)$	Multiple pregnancies $(n = 63)$			
49.5	92 7			
(10.1 - 116.2)	(47.6 - 177.1)			
`pg/ml* ´	`pg/ml* ∫			
P < 0.001**				

* Data presented as medians (25th-75th percentiles) **Mann-Whitney *U* test

Conclusions

Serum inhibin A measurements around two weeks after ET have a predictive value in view to

- treatment outcome
- pregnancy outcome

Aim of the study

To compare the predictive accuracy of serum inhibin A measurements with serum hCG measurements.

Use of serum inhibin A and hCG measurements to predict the outcome of IVF pregnancies

(Hauzman et al. Fertil. Steril. 2004)

clinical pregnancies ↔ *preclinical abortions*

	AUC (95% CI)	Optimal cutoff	Sensiti- vity	Speci- ficity	PPV	NPV
Day 11 hCG level	0,79 (0,69–0,89) ^{a,b}	46 IU/I	0,76	0,71	0,96	0,23
Mean inhibin A level	0,91 (0,85–0,96) ^a	12 pg/ml	0,82	0,86	0,98	0,33
Linear combination (X) (hCG + inhibin A) 0,90 (0,84–0,96) ^b	1,7	0,80	0,93	0,99	0,33

 $X = 0,0622 + 0,00843 \times hCG_{11. day} + 0,0708 \times inhibin A$

^a*P* = 0,02; ^b*P* < 0,001

Use of serum inhibin A and hCG measurements to predict the outcome of IVF pregnancies

(Hauzman et al. Fertil. Steril. 2004)

ongoing pregnancies ↔ early pregnancy losses

	AUC (95% CI)	Optimal cutoff	Sensiti- vity	Speci- ficity	PPV	NPV
Day 11 hCG level	0,80 (0,73–0,88)	58 IU/I	0,74	0,79	0,94	0,41
Mean inhibin A level	0,79 (0,71–0,87)	28 pg/ml	0,73	0,71	0,92	0,38
Linear combination (X) (hCG + inhibin A)	0,83 (0,75–0,90)	0,9	0,80	0,75	0,93	0,46

 $Y = -0,464 + 0,0210 \times hCG_{11. day} + 0,00686 \times inhibin A$

Use of serum inhibin A and hCG measurements to predict the outcome of IVF pregnancies

(Hauzman et al. Fertil. Steril. 2004)

multiple ongoing pregnancies ↔ all other outcomes

	AUC	Optimal	Sensiti-	Speci-	PPV	NPV		
	(95% CI)	cutoff	vity	ficity				
Day 11 hCG level	0,86 (0,79–0,92) ^a	100 IU/I	0,79	0,80	0,70	0,86		
Mean inhibin A level	0,71 (0,62– 0,80) ^{a,b}	60 pg/ml	0,70	0,66	0,56	0,78		
Linear combination (X) (hCG + inhibin A) 0,86 (0,80–0,93) ^b		-0,5	0,79	0,81	0,71	0,86		
Z = –3,114 + 0,0199 × hCG _{11. day} + 0,00366 × inhibin A					^a <i>P</i> = 0,004; ^b <i>P</i> < 0,001			

Conclusions

Serum inhibin A measurements are more accurate than hCG measurements for predicting preclinical abortion after IVF,

but

they have no advatage in forecasting ongoing or multiple ongoing pregnancies.

Summary I.

Measurement of serum inhibin B concententration

- has predictive value
 - in premature ovarian insufficiency on day 3 of the cycle
 - in view to ovarian response on day 1 of gonadotrophin stimulation
- seems to have predictive value to IVF treatment outcome on the day of OPU

Summary II.

Measurement of serum inhibin A concentration two weeks after ET has predictive value in view to treatment and pregnancy outcome, however it overtakes the value of hCG measurement only in view to preclinical abortions.