Prediction of Menopause: the key to subfertility management?

The menopause and its management – a revisit Edinburgh, October 6&7, 2008

UMC Utrecht

Take Home Message

Prediction of Menopause: the key to subfertility management?

Yes and No

Agenda

- The Problem: age related female subfertility
- The Key: ovarian ageing
- The Solution: prediction menopause??
- Discussion

Career Lifestyle

• Female

- Contraception
- Education
- Labour Participation
- Postponement Childbearing
- Male:
 - Postponement "Childbearing"

The Problem

Postponing Childbearing

Reduced Completed Fertility Rates

Population Size Reduction

Economical Impacts....

Age related female fertility decay

Agenda

- The Problem: age related female subfertility
- The Key: ovarian ageing
- The Solution: prediction menopause?
- Discussion

The couple trying to conceive a child without success after one or two years of trying....

No explanation found in the infertility work up...

Which is true for 60% of those couples. What is wrong with them..??

Consistent Poor Responders in IVF (almost sterile) have decreased interval to MP or Transition compared to normal responders (normal fertile)

	Study group Control group				Study group					Adjusted* Odds or Hazard ratio
Study	N	Median Follow Up	MP or Transition	FSH IUЛ	N	Median Follow Up	MP or Transition			
Farhi, 1997	12	9 months		23-85						
De Boer, 2003	636	6 years	22%	•	3675	6 years	7%	~3.1 (Odds)		
Lawson, 2003	118	5 years	50%	-	265	5 years	16%	~3.1 (Hazard)		
Nikolaou, 2002	12	4 years	92%	-	24	4 years	17%	~5.3 (Odds)		

* Adjustments were carried our for age and/or smoking behaviour

And...Human Fertility.... is not super.... MFR <u>Cumulative pregnancy rate after</u> <u>6 months 12 months 24 months</u> 60 months

Category					
Superfertile	60%	100%			
Normally fertile	20%	74%	93%	100%	
Moderately subfertile	5%	26%	46%	71%	95%
Severely subfertile	1%	6%	11%	21%	45%
Infertile	0%	0%	0%	0%	0%

Managing female age related sub/infertility - options

- More and better infertility treatment ??
- Campaign ??

Leridon

- Monte Carlo simulation model for Live Birth probability
 - MFR
 - Early pregnancy loss rate
 - Rate of becoming naturally sterile
- Age corrected - (starting to conceive at 30, 35 en 40 year)
- Effect applying IVF
 - (in sub/infertility of 4, 3 or 2 years duration)

Managing female age related sub/infertility - options

- More and better infertility treatment ?? – Beware of complications: handicapped twin offspring
- Campaign ??

Estimates of Subfertility for the Dutch population based on non-pregnant rates in the Saguenay Population (Eijkemans, 2004)

	Number not pregnant	
Age at Marriage	After 18 months	
20-24	1261	10%
25-29	4660	16%
30-34	6439	20%
35-39	3472	32%
Total Subfertile	15832	18%

Estimates of Su on non-pregna (Eijkemans, 2004) Effect of Pu	ubfertility for the D nt rates in the Sagu). ceventive camp	utch popu lenay Popu Daign	lation based llation	
	Number not pregnant		Decrease	%
Age at Marriage	After 18 months			
20-24	1261	10%		
25-29	11547	16%		
30-34	0			
35-39	0			
Total Subfertile	12808	15%	3042	19.1

Campaigning

- At the population level 20% reduction subfertility: substantial
- Measures not necessary for large group of high and normal fertile women who will have no subfertility even if waited until after 30 or 35: overkill

The Key

Ovarian ageing produces unwanted sub- or in-fertility

Rate of ovarian ageing is variable among women

Events in reproductive ageing have fixed temporal relationship ??

ART and campaigns have limited effect

Agenda

- The Problem: age related female subfertility
- The Key: ovarian ageing
- The Solution: prediction menopause?
- Discussion

The Solution

Is not in the classical Ovarian Reserve tests Is not in Campaigning nor in more IVF Is it in predictors of fertility lifespan, ie menopause?

Counselling Centre

- All 20-25 year old females
- Test predicting menopause

Which marker describes the full period (15-50) of decreasing numbers of follicles??

We don't know really

female age, in 4 yea	r follow up study	, n= 163	
Van Rooij, Menopause, 200	04		
	Currently working	on follow up	12 years
TABLE 3. Predictive capacity of ovari	an reserve markers assessed at T ₁ j	for outcome cycle i	rregularity within 4 yea
TABLE 3. Predictive capacity of ovari	an reserve markers assessed at T ₁ J OR (95% CI)	for outcome cycle i P	rregularity within 4 yea ROC _{AUC} (95% (
TABLE 3. Predictive capacity of ovari Multivariable analysis, all variables	an reserve markers assessed at T ₁ J OR (95% CI)	for outcome cycle i P	rregularity within 4 yea ROC _{AUC} (95% (
TABLE 3. Predictive capacity of ovari Multivariable analysis, all variables AMH (per 0.1 µg/L)	an reserve markers assessed at T ₁ J OR (95% CI) 0.81 (0.67–0.99)	for outcome cycle is P 0.04	rregularity within 4 yea ROC _{AUC} (95% (
TABLE 3. Predictive capacity of ovari Multivariable analysis, all variables AMH (per 0.1 µg/L) Inhibits B (per ng/L)	an reserve markers assessed at T ₁ J OR (95% CI) 0.81 (0.67–0.99) 0.98 (0.97–0.997)	for outcome cycle is P 0.04 0.02	rregularity within 4 yea ROC _{AUC} (95% (
TABLE 3. Predictive capacity of ovari Multivariable analysis, all variables AMH (per 0.1 µgL) Inhbin B (per ngL) A ke (per y)	an reserve markers assessed at T ₁ J OR (95% Cl) 0.81 (0.67–0.99) 0.98 (0.97–0.997) 1.39 (0.97–1.98)	for outcome cycle i P 0.04 0.02 0.07	rregularity within 4 yea ROC _{AUC} (95% (

De Vet, 2002

Counselling Centre

AMH predicting menopause as proxy for fertility lifespan: we need much longer data....

and genes...

- Heritability factor for age at MP
 0.5-0.8...based on twin studies
 - Snieder, 1998
 - De Bruin, 2001
 - Treloar, 1998

How to find the genes

Phenotypes: POF vs controls and early/late menopause

Candidate functional genes Genome Wide screening

Association studies in cohorts with known age at natural menopause

Linkage analysis in familial POF

<u>Candidate gene (SNP)</u> Association studies in Natural Menopause cohorts: consistent findings??

Study	Year	Gene	No	Effect on AMP in years	Notes
van Asselt	2003	FV Leiden	373	3.1	s
Kevenaar	2007	AMH II rec	2381	2.6	S, in nullipara
Tempfer	2005	FV Leiden	728	2.4	s
		APOE-2	738	1.5	s
Disseldorp	2008	FV Leiden	742	1.9	NS
		APOE-2	742	2	NS
		FVII	742	0.8	s
Hefler	2006	CYP1B1-4	1345	0.8	s
Dvornyk	2006	ER-α	248	0.2	NS
Hefler	2005	CYP1B1-4	1360	0.8	s
Riener	2003	IL-1RA	90	1	NS
He	2007	ESR2	229	0.3	NS
		CYP-19	229	1.1	s
		CYP-17	229	0.1	NS
Kok	2005	ER-α	385	0.3	NS
Huber	2006	SRD-5A2	323	1.1	NS
Worda	2004	Nos-3	87	0.1	NS
Zhang	2007	HDC	265	1.6	s
Mitchell	2008	CYP-19	152	2.6	s
		HSDB-1	152	1.9	S

High density GWA

Studies are underway

Candidate functional genes (identified in POF cases..)

- ZF X (low germ cell number)
- BMP15 (altered folliculogenesis)
- NOBOX (disrupted oogenesis)
- LHX8 (impaired oogenesis)
- GDF9 (disrupted folliculogenesis)
- Fragile X (altered follicle depletion)FOXL2 (increased follicle depletion)
-

Simpson Ann. N.Y. Acad. Sci., 2008

Gene*	Gene-name	Locus in human	animal / human		Gene*	Gene-name	Locus in human	animal / human
HSD3B2	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2	1p13.1	human		KITLG	KIT ligand	12q22	Mouse
DDX20	DEAD (Asp-Glu-Ala-Asp) box polypeptide 20	1p21.1-p13.2	Rat		Fexela	Forkhead box 01	13q14.1	Mouse / huma
Msh4	MutS homologue 4	1p31	Mouse		Rb1	Retinoblastorna	13q14.1-q14.2	Mouse
LHX8	LIM homeobox 8	1p31.1	Mouse / Human		BCL2L2	BCL2-like 2	14q11.2-q12	Mouse
TGFBR3	transforming growth factor, beta receptor III	1p33-p32	human		Bmp4	Bone morphogenetic protein 4	14q22-q23	Mouse
Wnt4	Wingless-related MMTV integration site 4	1p35	Mouse		ESR2	Estrogen Receptor β	14q23.2	Mouse
GJA4	Gap junction protein, "alpha 4	1p35.1	Mouse		POLG	Polymerase, Dna, Gamma	15q25	Human
Bmp\$b	Bone morphogenetic protein 8b	1p35-p32	Mouse		cprb1	cytoplasmic polyadenylation element binding protein 1	15q25.2	Mouse
Gpr3	G protein-coupled receptor 3	1p36.1-p35	Mouse / human		SH2B1	SH2B adaptor protein 1	16p11.2	Mouse
FIGLA	folliculogenesis specific basic helix-loop-helix	2p13.3	Mouse / human		Ybx2	Y box binding protein 2	17p11.2-p13.1	Mouse / huma
LHR	Luteinizing Hormone Receptor (LHCGR)	2p21	Mouse	Γ	NOG	Noggin	17q22	Human
FSHR	FSH receptor	2p21-p16	Mouse / Human		Bel2	B-cell CLL/lymphoma 2	18q21.3	Mouse
EIFSB	eukaryotic translation initiation factor SB	2q11.2	Human		NANOS3	Nanos homolog 3	19p13.12	Mouse / Hum
INHA	inhibin, alpha	2q33-q36	Human		AMH	anti-Mullerian hormone	19p13.3	Mouse / Hum
Mihi	MutL homologue 1	3p21.3	Mouse		LHB	lateinizing hormone beta rolumentide	19q13.32	Human

More Candidate functional genes

DAZL	deleted in azoospermia- like	3p24	Mouse / Human		NLRP5	NLR family, pyrin domain containing 5 (Mater)	19q13.42	Mouse
FOXL2	forkhead box L2	3q23	Mouse / Human		RFPL4A	ret finger protein-like 4A	19q13.42	Mouse
KIT	Kit receptor, v-kit Hardy- Zuckerman 4 feline sarcoma viral oncogene homolog	4q11-q12	Mouse		Cdc25b	Cell divison cycle 25 homolog B	20p13	Mouse
Tert	Telomerase reverse transcriptase	5p15.33	Mouse		BCL2L1	BCL2-like l	20q11.21	Mouse
Fst	Follistatin	5q11.2	Mouse		BMP7	bone morphogenetic protein 7	20q13	Rat
Adamts19	ADAM metallopeptidase with thrombospondin type 1 motif, 19	5q31	Mouse		SP011	SPO11 homolog	20q13.2-q13.3	Mouse
GDF9	growth differentiation factor 9	5q31.1	Mouse / Human		AIRE	autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy)	21q22.3	Human
MSH5	mutS homolog5	6p21.3	Mouse / Human		DMC1	Disrupted meiotic cDNA 1 homolog	22q13.1	Mouse / Human
POU5F1	POU class 5 homeobox 1	6p21.31	Mouse		USP9X	Ubiquitin-Specific Protease 9	Xp11	Drosophila
Foxo3a	FOXO subfamily 3a	6q21	Mouse / Human		BMP15	bone morphogenetic protein 15	Xp11.2	Mouse / human
ESR1	estrogen receptor a	6q25.1	Human		DDX3X	Dead box polypeptide 3, X linked	Xp11.3-p11.23	Mouse
EGFR	epidermal growth factor receptor	7p12.3-p12.1	Zebrafish		ZFX	zinc finger protein, X- linked	Xp22.2-p21.3	Mouse
Ahr	Aryl-hydrocarbon receptor	7p15	Mouse		AR	Androgen receptor	Xq11.2-q12	Mouse
NOBOX	Newborn ovary homeobox gene	7q35	Mouse / Human		TAFI	TATA box binding protein (TBP)-associated factor	Xq13.1	Drosophila
NR6A1	nuclear receptor subfamily 6, group A, member 1	9q33-q34.1	Mouse		DACH2	dachshund homolog 2 (Drosophila)	Xq21	Human
SOHLHI	spermatogenesis and oogenesis specific basic helix-loop-helix 1	9q34.3	Mouse		POF1B	premature ovarian failure, 1B	Xq21.1-q21.2	Human
CXCL12	chemokine (C-X-C motif) ligand 12 (strornal cell- derived factor 1)	10q11.1	Mouse		DIAPH2	diaphanous homolog 2 (Drosophila)	Xq21.33	Droshophila / Human
PTEN	phosphatase and tensin homolog	10q23.3	Mouse	Γ	CENPI	Centromere protein I	Xq22.1	Rat

BDNF bri fac	ain-derived neurotrophic etor	iipi3	Mozse	BHLHB9	basic helix-loop-helix domain containing, class B, 9	Xq23	Human
FSHB FS	SH hormone β-subunit	11p13	Mouse / Human	XPNPEP 2	X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound	Xq25	Haman
ATM At	taxia telangiectasia	11q22.3	Mouse	POF1	premature ovarian failure 1	Xq26-q28	Human
XIST X tra co	(inactive)-specific anscript (non-protein sding)	inactiveXq13.2	Human	SOX3	SRY (sex determining region Y)-box 3	Xq27.1	Mouse
FMR2 fra	agile X mental standation 2	Xq28	Harran	FMR1	fragile X mental retardation 1	Xq27.3	Human

Genetics of menopause variation

Problems

- Power, large cohorts needed
- Confirmation, on other large cohorts
- Effect size small: 1-3 years
- Multigene predictions: will they ever do?

Counselling Centre

Genes predicting menopause as proxy for fertility lifespan: they are there, but in a complex fashion....

Agenda

- The Problem: age related female subfertility
- The Key: ovarian ageing
- The Solution: prediction menopause?
- Discussion

Counselling Centre

Test to be developed Counsel on fertility lifespan and associated issues, like CV disease Counsel on lifestyle, like smoking

Would young women be interested?

Prediction of Fertility Lifespan

• Endocrine markers: AMH?

- Follow up studies, many underway
- Cross-sectional data for age specific reference values
- Genetic markers: to be assessed!?
 Large studies needed and confirmation!
 - Follow up studies
- · Lifestyle factors: smoking

Take Home Message Prediction of Menopause: the key to subfertility management? Yes and No

Thank you

Or will the credi(bili)t(y) crisis do the job?