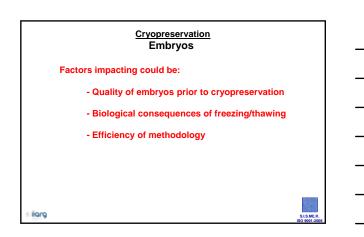
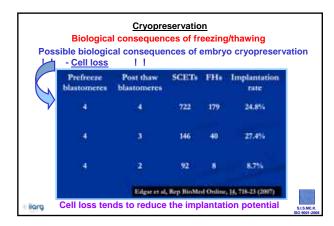


Cryopreservation EMBRYOS / 2 pn

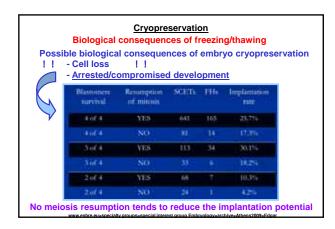
- Reasons for cryopreservation of human embryos


- To increase efficiency of ART
 To reduce multiple pregnancies
- To transfer in natural cycle
- Fertility preservation

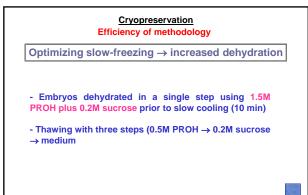
ilarg


Cryopreservation EMBRYOS / 2 pn - Cryopreservation policy 1) cryopreserving before morphology becomes a substantial factor: two pronucleate stage 2) optimizing fresh transfer by selecting the morphologically best embryos to be transferred; cryopreservation of spare cleavage stage embryos or blastocysts Image: Which embryos to cryopreserve? Which technique to use?

Embryos No of SET's Implantatio
Rate
Fresh 2524 31.1%*
Cryopreserved 3020 24.1%



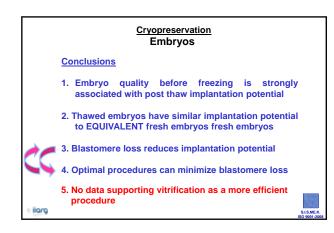
	Embryos transferred	FH%	Implantation Rate
4 cells* Fresh	1567	260	16.6%
4 cells* Thawed Intact	794	134	16.9%
2 cells* Fresh	899	58	6.5%
2 cells* Thawed Intact	401	29	7,2%
• 40 – 42 hpi	Edgeretal	(2000) Human	Reproduction 15, 175


Slow-free	zing or Vitr ?	ification	
Day 3 embryos	Vitrification	Slow freezing	<i>P</i> -value
Cryosurvival (%)	222/234 (94.8)	206/232 (88.7)	0.02
Embryos with 100% blastomere survival (%)	173/234 (73.9)	106/232 (45.7)	<0.01

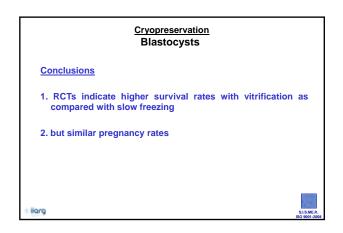
Cryopreservation Efficiency of methodology Loutradi et al (Fertil Steril 90, 186-193, 2008) Systematic review and meta analysis on vitrification versus slow freezing of human embryos. Kolibianakis et al (Current opinion in OB/GYN 21, 270-274, 2009) Cryopreservation of human embryos by vitrification or slow freezing: which one is better? - Vitrification as compared with slow freezing, appears to have higher post-thawing survival rates both for cleavagestage embryos and for blastocysts - Post-thawing blastocyst development of embryos with vitrification as compared with slow freezing.

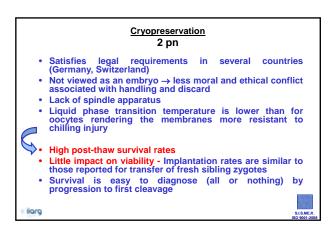
 No significant difference in clinical pregnancy rates per transfer could be detected between the two cryo methods

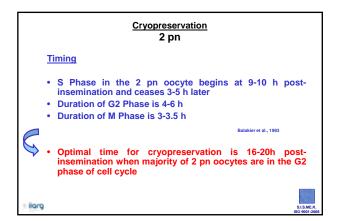
liorg

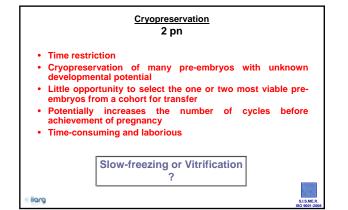

Edgar et al., 2009

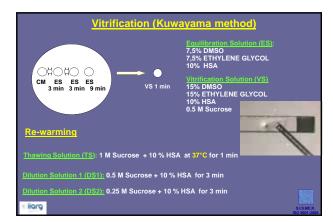
	0.1 M Sucrose	0.2 M Sucro
Embryos Thawed	474	471
Fully Intact (100%)	259 (54.6%) ^a	379 (80.4%)
50%-99% Intact cells	113 (23.8%)	57 (12.1%)
<50% intact	102 (21.5%)	35 (7.4%) ^b

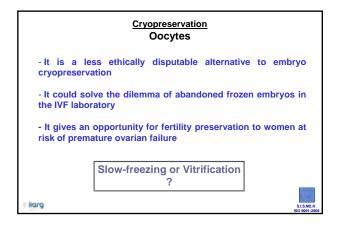

	0.1 M Sucrose	0.2M Sucross
Embryos Thawed	183	217
Embryos Transferred	139	193
EH	32	48
R/Embryo Transferred	23.1%	24.8%
IR/ Embryo Thowed	17.5%	22.1%






		Blastocy	vsts		
Odds ratio of pos	thawing survival rat	e of blastocysts afte	er vibrification an	c slow freezin	g.
Stacy	Vtrifeation nN	Siow treezing n/N	OR (lixed) 95% Cl	Vieight %	CR (fixed) 36% CI
Huang	68/81	41/72	-+		3.95 [1.96, 0.41
Kuwayama	5435/4328	131/154	-	76.55	1.72 (1.11, 2.65
Total (95% CI)	6449	228	•	100.00	1.50 [1.53, 3.14
Total events: 5763 (V	Itilication), 172 (Slow the	ealing)	-		
Test for hele openeity	c Chi ² = 3.56. dl = 1 (P =	0.06)			
Test for overall effect	Z = 4.25 (P < 0.0001)				
		0.1 6.2	65 1 2 5	10	
		Favors slow to	ealing Favors vi	trification	





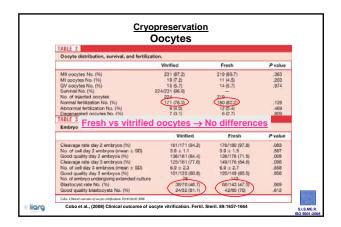
Cryopreservation 2 pn

Conclusions

- 1. The 2 pronuclear stage can be successfully cryopreserved with high post-thaw survival
- 2. There is a significant workload for the laboratory
- 3. There is a potential delay to achieving pregnancy
- 4. No data supporting vitrification as a more efficient procedure

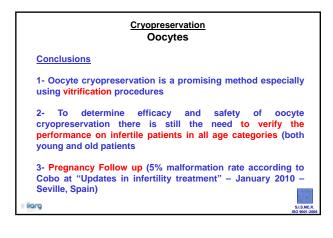
ilarg

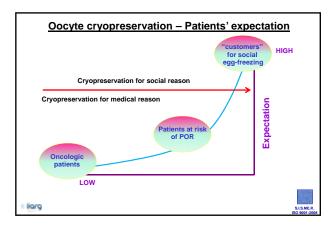
	Cryoprese Oocyt		
Slow freezing	0.1M suc	0.2M suc	0.3M suc
No. thawed	4027	1451	7595
Survival	51%	71%	73%
Fertilisation	54%	80%	73%
Development	85%	93%	90%
Implantation	10%	17%	6%
FH's/100 thawed oocytes	2.3	9.0	2.9

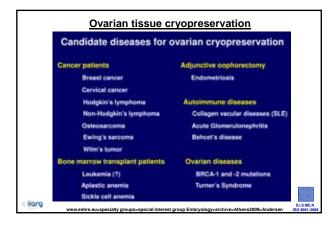


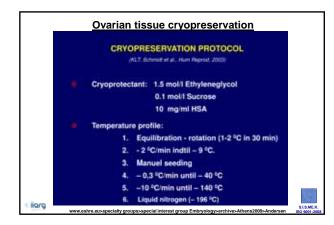
oryo development OR (95% CI)	and
OR (95% CI)	
0.45 (0.33 to 1.29)	0.20
0.76 (0.37 to 1.53)	0.50
0.39 (0.08 to 1.49)	0.16
2.05 (0.42 to 12.9)	0.50
2.01 (0.10 to 119.9)	1
4.08 (0.39 to 203.5)	0.33
0.0 (0.00 to 0.23)	0.24
0.98 (0.53 to 1.79)	0.90
1.24 (0.67 to 2.28)	0.47
0.29 (0.05 to 1.19)	0.10
	2.76 (0.37 to 1.53) 3.39 (0.08 to 1.49) 1.05 (0.42 to 12.9) 2.01 (0.10 to 119.7) 4.08 (0.39 to 203.5) 3.0 (0.00 to 0.23) 3.99 (0.53 to 1.79) 1.24 (0.67 to 2.28)

<u>Cryopreserv</u> Oocyte			
Table II Clinical outcomes of cy vitrified/warmed oocytes	cles performed with		
	Patients included (N = 40)		
Number of warmed oocytes (mean ± SD)	3.1 ± 0.30		
Number of embryos transferred (mean \pm SD)	2.3 ± 0.88		
Number of embryo transfer performed (%)	39/40 (97.5)		
Clinical pregnancy rate per cycle (%)	15/40 (37.5)		
Clinical pregnancy rate per transfer (%)	15/39 (38.5)		
Ongoing pregnancy rate per cycle (%)	12/40 (30.0)		
Ongoing pregnancy rate per transfer (%)	12/39 (30.8)		
Implantation rate (%)	19/93 (20.4)		
Ongoing implantation rate (%)	16/93 (17.2)		
(2010) Embryo development of fresh 'versus' andomized sibling-oocyte study. Hum.Rep., 25:		after ICSI: a	S.I.S.ME ISO 9001:

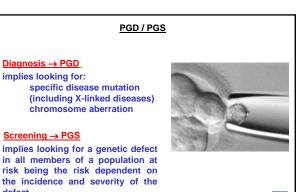





Clinical results.			
	Vitrified	Fresh	Mixed
No. of transfers	23	1	4
No. of embryos transferred (mean ± SD)	49 (2.1 ± 1.2)	2 (2 ± 0)	8 (2.1 ± 0.1)
Pregnancy rate per transfer	15/23 (65.2)	1 (100)	2 (50)
mplantation rate (No. of sacs/ No. of embryos transferred)	20/49 (40.8)	2/2 (100)	2/8 (25)
Multiple pregnancy rate (twin)	5/15 (23.8)	1 (100)	0
Miscarriage rate	3/15 (20)	0	0
Biochemical pregnancy rate		0	0
Ongoing pregnancy rate	11/23 (47.8)	1 (100)	2 (100)



Ovarian tissue cryopreservation Vitrification versus controlled-rate freezing


Based on tissue from 20 women and using morphological characteristics evaluated by light and electron microscopy

Vitrification was comparable to slow freezing in terms of preserving follicles in human ovarian tissue
It appears that the ovarian stroma retained a better

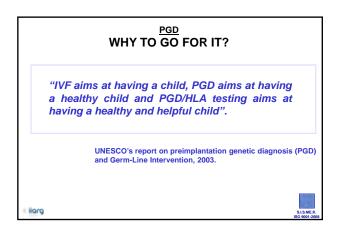
morphological integrity after vitrification

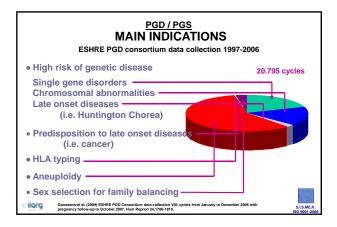
- Clinical implication: vitrification is not yet applied in a clinical setting

Keros et al., Hum Reprod, 2009;24:1670 ilarg

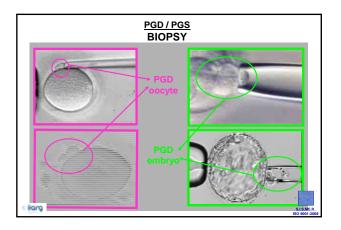
defect ilarg

PGD / PGS WHY TO GO FOR IT?

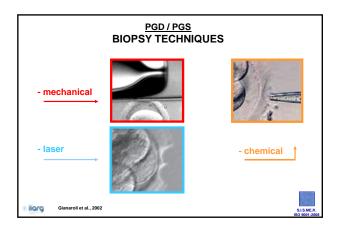

Fertile / infertile couples whose children might inherit

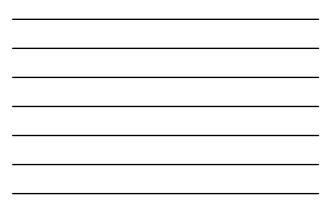

a severe disease a predisposition to a pathology

Fertile / infertile couples in which one partner is carrier of a translocation

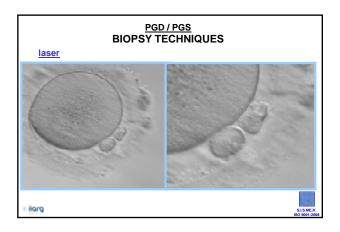

Infertile couples aiming at deselecting aneuploid embryos

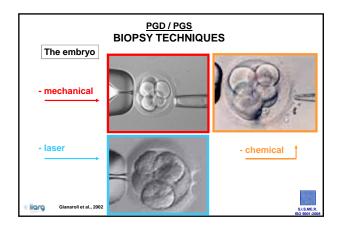
Fertile couples who wish to save a sibling's life (HLA-typing)

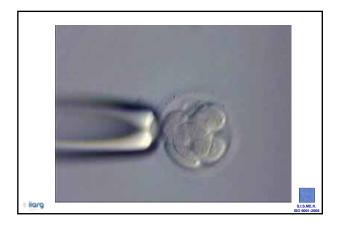


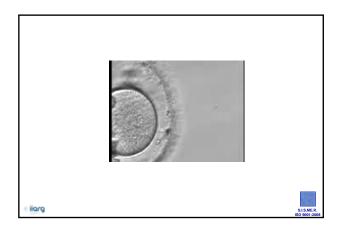


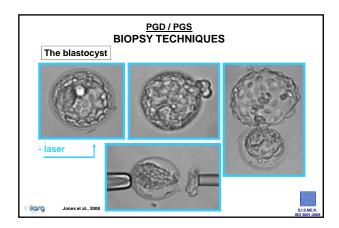
<u>PGD / PGS</u> BIOPSY			
PB	Blastomere	Blastocyst	
Pros - Meiosis by- product - Several days for analysis	Pros - For maternal and paternal defects - For mitotic defects	Pros - For maternal and paternal defects - For mitotic defects - Several cells available	
Cons - Only for maternal defects - Diagnosis on oocyte counterpart	<u>Cons</u> - Reduces embryonic mass - Mosaicism	Cons - A few hours available - Are TE cells representative of ICM cells?	

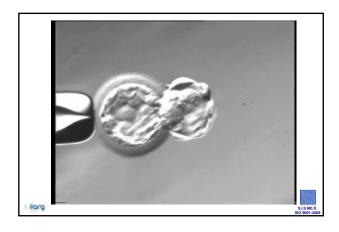


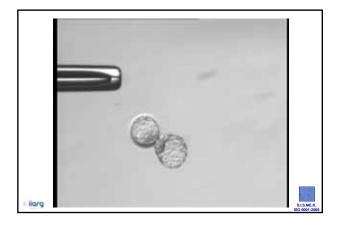


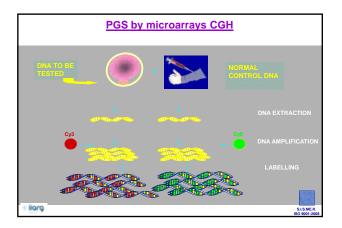


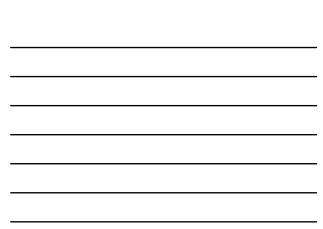


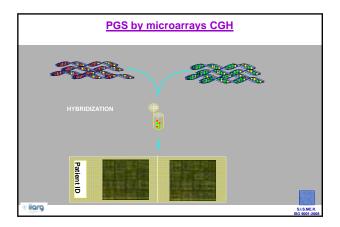


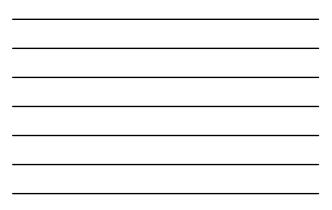


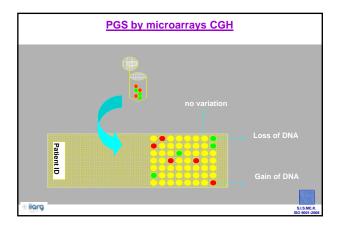


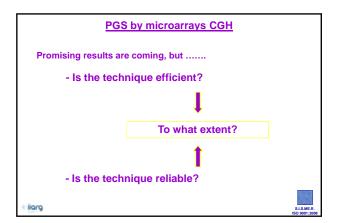


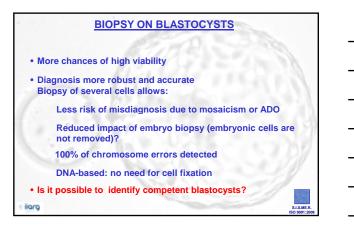


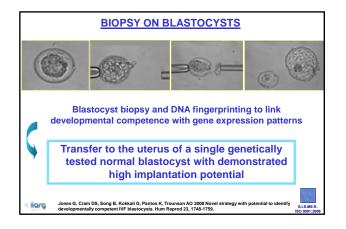

PGD / PGS BIOPSY TECHNIQUES			
Mechanical	Chemical	Laser	
Pros - Avoids the use of heat or acidic solutions	Pros - It was the most commonly used method for a long time	<u>Pros</u> - Very easy to use	
Cons - Requires a double holder - Requires a skilled operator - It is time consuming	<u>Cons</u> - Requires a double holder - Requires a skilled operator - Requires the use of acidic solution	Cons - Requires the release of heat - Training and skill underestimated?	

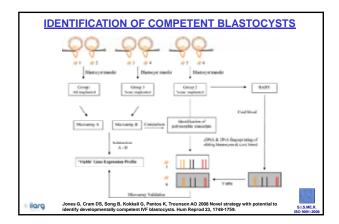


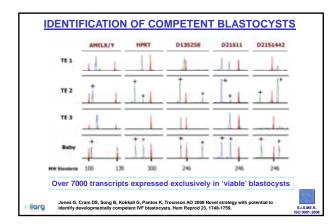

Des	PGS by microarrays CGH	
	Single cell comparative genomic hybridization (CGH) is an emerging form of preimplantation genetic screening (PGS) that is used after whole genome amplification to detect abnormalities in the number of chromosomes in an oocyte or an embryo.	The State of the second
245		
 liorg 	3.1.5.ME 80 00012	R.











PGD / PGS

Conclusions

1. There is a wide range of indications to PGD / PGS

2. The technical procedures are becoming more reliable and $\ensuremath{\mathsf{efficient}}$

3. The technical approach can be extended to the research for embryo competence $% \left({{{\bf{x}}_{i}}} \right)$

S.I.S.ME

liarg

REFERENCES

PLETEREVEE
 Plashaban B, Urman B, Ata B, Isikilar A, Larman MG, Hamilton R, Gardner DK. A randomized controlled slud of human Day 3 embryo cryopreservation vy slow freezing or vitification: vitificatio

ilarg

REFERENCES

Gianaroli L, Magli MC, Ferraretti AP. Preimplantation genetic diagnosis. In: Current Practices and Controversies in Assisted Reproduction, Report of a Meeting on Medical, Ethical and Social Aspects of Assisted Reproduction held at WHO Headquarters in Geneva, Switzerland, 17-21 September 2001. Edited by E: Vayena, P.J. Rowe, P.D. Griffu, World Health Organization, Geneva, 2002: 210-219
 Goossens V, Harton G, Moutou C, Traeger-synodinos J, Van Rij M, Harper JC. ESHRE PGD Consortium data collection VIII: cycles from January to December 2006 with pregnancy follow-up to October 2007. *Hum Reprod* 2009;**24**:1786-1810.
 Jones G, Gram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IV b Islastoysts. *Hum Reprod*:2008;**23**, 1748-1759.
 Kolibianakis EM, Venetis CA, Tarlatzis BC. Cryopreservation of human embryos by vitrification or slow freezing: which one is better? *Curr Opin Obset Gyncol*:2009;**21**:270-274.
 Loutradi KE, Kolibianakis EM, Vneteis C, Papanikolaou G, Pados G, Bonti I, Tarlazia B. Cryopreservation of human embryos by vitrification or slow freezing: in cycles and the methys by ethilication or slow freezing: in cycles and the tembryos development of resh versus while a methyse B and the cycles for the Core of the cycles and the cycles and the Cycles and the Cycles and the Cycle and the cycles and the cycle and the cycles and the cycle and the cycles and the cycle and the

Embryo development of fresh 'versus' vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study *Hum Reprod* 2010;25:66-73.

ilarg