Ovarian stimulation and consequences for oocyte/embryo quality

Esther Baart

Presentation outline

• Follikel development and oocyte quality
• Embryo quality assessment
 • Morphology and development
 • Chromosomal constitution
• Effect of ovarian stimulation approaches
 • GnRH agonist versus GnRH Antagonist
 • Recombinant FSH versus hMG
• New techniques in embryo quality assessment

What is a good oocyte/embryo?

• Competent to undergo fertilization
 • Chromatin remodeling
 • DNA repair
• Supports timely completion of cleavage divisions
• Reliably segregates chromosomes
 • Spindle formation
 • Checkpoint functions
• Activates the embryonic genome (8 cell stage)
 • Chromatin remodeling
 • Establishment of genomic imprinting
How to assess embryo quality?
- The classical approach -

- Implantation potential, ongoing PR and live birth
- Morphology and development:
 - Assessment of pronucleate embryos
 - Timing of cleavage
 - Assessment on day 3 after fertilization
 - Development to the blastocyst stage

The perfect embryo
(based on morphology and development)

Successful implantation after SET in 49% of patients ≤36 yrs

At least 50% of embryos are chromosomally abnormal

Day 3: cleavage stage and chromosome abnormalities

- 662 patients, 916 cycles
- Poor prognosis patients
- PGS on day 3
- XY, 13, 14, 15, 16, 18, 21, 22
- Cleavage stage assessment

Papanikolaou et al., NEJM, 2006

Magli et al., Fertil Steril, 2007
Day 3: fragmentation and cell number

Development to the blastocyst stage and chromosomal abnormalities

- 148 patients, 148 cycles
- patients ≥37 years
- IVF and ICSI
- PGS on day 3, two cells
- XY, 13, 16, 18, 21, 22
- Assessment of blastocyst development

Staessen et al., Hum Reprod, 2004

FISH diagnosis on day 3 and development on day 5
Randomized comparison of two ovarian stimulation approaches

- Determine the incidence of aneuploidy and mosaicism in embryos from younger IVF patients
- Can PGS be used as an extra parameter to assess embryo quality?

Comparison of stimulation approaches

Randomization of 111 patients:

- Conventional
 - FSH 150 IE/day
 - Ultrasound
 - rFSH 150 IE/day
 - Antagonist
 - Ultrasound
 - 2 wks

- Mild
 - Agonist
 - rFSH 225 IE/day
 - OPU
 - ET
 - ET

Preimplantation genetic screening

- Fertilization
- Day 3: embryo biopsy
- FISH analysis
- Diagnosis on one or two blastomeres
- Transfer of chromosomally normal embryos
Fixation and analysis of blastomeres

Method using HCl/Tween and Methanol/Acetic acid

First round of FISH: chromosomes 1, 7, 15, X & Y

Second round of FISH: chromosomes 13, 16, 18, 21, 22

Baart et al., Hum Reprod, 2004

PGS Diagnosis in young IVF patients

Analysis of 265 embryos:

Diagnosis based on: one blastomere two blastomeres

PGS Diagnosis for statistical analysis

Analysis of 265 embryos:

Diagnosis based on: first blastomere biopsied
Lower aneuploidy rate after mild stimulation

<table>
<thead>
<tr>
<th>% abnormal embryos / diagnosed</th>
<th>Stimulation protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>Conventional</td>
</tr>
<tr>
<td>40%</td>
<td>Mild</td>
</tr>
<tr>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

N = 33 40
P = 0.016

Good quality embryo rate per patient: 35% 51%
P = 0.04

Average number per patient

What could it mean to the embryologist?

Conventional ovarian stimulation:

Mild ovarian stimulation:
What could it mean to the embryologist?

Conventional ovarian stimulation:

Mild ovarian stimulation:

Chromosomal mosaicism after analysis of two cells

Conventional stimulation (98 embryos)

Mild stimulation (96 embryos)

Rate of mosaic embryos per patient:

65% 37% P= 0.004

Effect of LH/hCG containing gonadotropins

- Retrospective analysis
- recFSH vs. hMG
- Long agonist protocol
- PGS analysis on day 3
- Reduction in the number of oocytes
- Similar no. of normal embryos (3.1 vs. 3.3)

Weghofer et al., Hum Reprod, 2008
PGS and embryo quality: conclusions

- Ovarian stimulation has an impact on the proportion of aneuploid/mosaic embryos
- PGS provides an additional marker of embryo quality
- PGS is invasive, costly and time consuming

New techniques in embryo quality assessment

- RNA purification
- DNA microarray
- Cytogenetics FISH/CGH
- Embryo biopsy
- Culture medium
- Follicular fluid
- Metabolomics/Proteomics
- Embryo biopsy
- Realtime PCR
- Genomics
- Zona pellucida
- Cumulus cells
- Culture medium

Freeze 'm all?

- Improvements in cryopreservation protocols
- Single embryo transfer in the natural cycle
- Sequential thawing and transfer of all embryos
- Timing of transfer?
Conclusions

- Assessment of chromosome constitution provides an additional marker for embryo quality
- Ovarian stimulation has an impact on the proportion of good quality embryos
- Ovarian stimulation should not aim at maximizing oocyte yield but at optimizing embryo quality
- Further improvements in embryo quality assessment are needed

Acknowledgments

Dept. of Reproductive Medicine and Gynaecology
University Medical Center Utrecht, The Netherlands
Prof. Nick Macklon
Prof. Bart Fauser

Dept. of Reproductive Biology, Gyn/Obs
Stanford University School of Medicine, Stanford/CA, USA
Prof. Aaron Hsueh