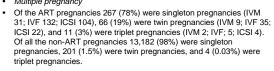
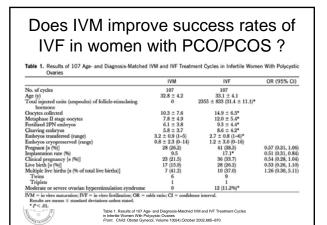

IVM and vitrification Better option than before?

Svend Lindenberg, Copenhage Fertility Center, Nordica, Section for Reproductive Biology

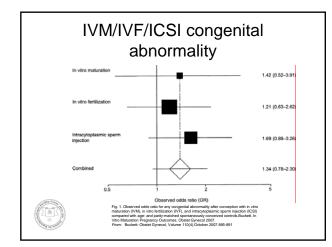
Does IVM improve success rates of IVF in women with PCO/PCOS ?

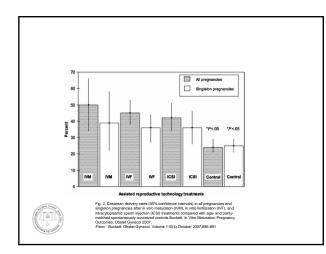
- Baby take home rate
- Multiple pregnancy rate
- OHSS risk
 How are the
- How are the offsprings doing

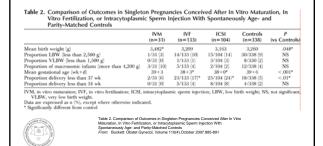

Vitrification of human immature oocytes
 Spindel problems ?
 Survival rate
 Offspring and birth defects
 Safety
 New perspectives



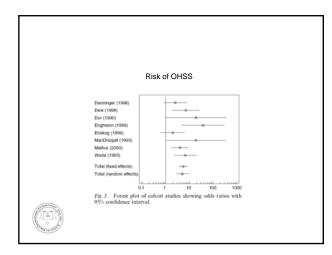
IVM/ICSI/IVF


Multiple pregnancy

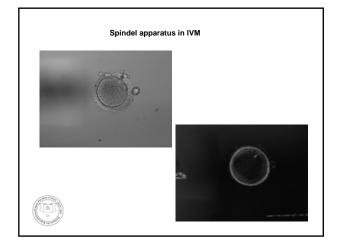

Buckett: Obstet Gynecol, Volume 110(4).October 2007.885-891

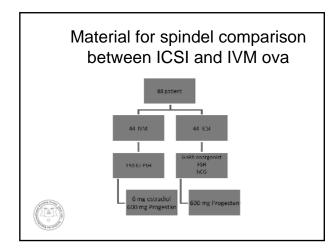


Does IVM improve success rates of IVF in women with PCO/PCOS ?

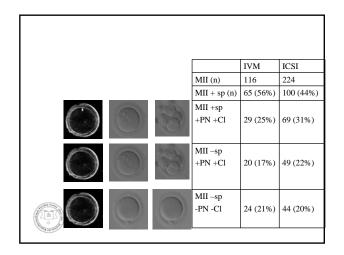


Does IVM improve success rates of IVF in women with PCO/PCOS ?


- CONCLUSION: All ART pregnancies are associated with an increased risk of multiple pregnancy, cesarean delivery, and congenital abnormality. Compared with IVF and ICSI, IVM is not associated with any additional risk.
- LEVEL OF EVIDENCE: II



Study	N PCOS	N Control	08	(955 CI)	,				
Durut al 1990	26	16	6.3	(6.03-3.9)	· +				
Uman et al 1992	19	-	0.04	(0-1.8)	0				
Kodama et al 1995	28	423	0.4	(0.2-1.2)	\mapsto				
Mulders et al 2003	49	-	8.2	(0.1-0.8)	1+¢	-1			
Final efforts OR	172	525	0.5	(8.2-8.9)		_			
Heijnen, E doi:10.109					prod Updat	ie 2006 12	2# 13-21;	3,0 OR for chance of cycli	4,0 e concellation
doi:10.109	13/hui	nupd/	dmi	036	prod Updal	e 2006 12	::13-21;	OR for chance of cycli	
doi:10.109	13/hui	nupd/	dmi	036	prod Updal	e 2006 12	::13-21;	OR for chance of cycli	e concellation

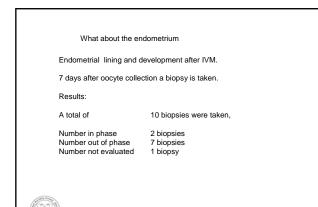


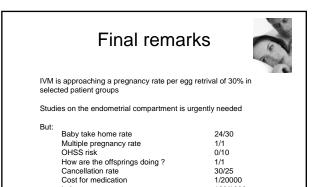
Does IVM improve success rates of IVF in women with PCO/PCOS ?

Are the ocytes after maturation healthy ?

	Total no oocyte aspirated(mean per patient)	Total no of MFII(mean per patient)	Mean number of MFII oocytes with spindle present	Fraction of MFII oocytes with later PN formation (%)	Fraction of MFII later having normal PN formation, spindle present and cleaved	Fraction of oocytes with 0- 45% angel for the spindle position
In vivo matured	259 (5,9)	224 (5,0)	2,3	67 %	34%	81 %
In vitro matured	215 (4,9)	117 (2,7)	1,5	53 %	30%	94 %
Significance	Not significant	P<0.05	P<0,05	Not significant	Not significant	Not significant
			1			

		Spi	ndle p	ositio	n	
		\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
	Angel	0°	1-45°	46-90°	91-180°	>181°
	IVM	36,9%	56,9%	4,6%	0%	1,5%
	ICSI	25,7%	63,3%	8,9%	1,9%	0%
and a second						




Effect of in vitro maturation on spindle position in human oocytes . A prospective comparative study on patients with male factor.

Results: We found the same mean number of oocytes retrieved (IVM 4,9 oocytes versus ICSI 5,9 oocytes). The mean number of MFII oocytes after collection of IVF/ICSI oocytes were 5,1 versus 2,1 for the IVM oocytes after 28 h maturation (P<0,01) however finally we found no significant change in rate of displacement of the spindle apparatus in the in vivo matured oocytes compared to the in vitro matured oocytes. (P > 0.05).

Conclusion

- The position (and morphology) of the spindel in MFII oocytes after IVM (94%) and after ICSI (91%) is normal
- MFII oocytes derived from in vitro maturation or in vivo maturation are not significantly different concerning cleavage rate

Lab cost

1/20000 160/1000

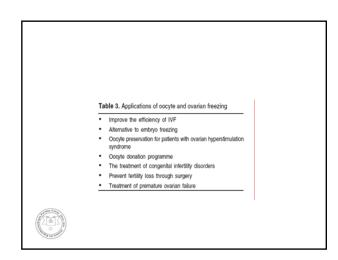
1/4 yes

An emerging demand for cryopreservation of human oocytes either due to legislation or demands from the women due to clinical conditions is now a fact.

Inteference with daily life for the patient Space for improvement : Cytoplasmic maturation

In this aspect IVM as a tool for providing immature or mature oocytes is obvious.

Roger G. Gosden

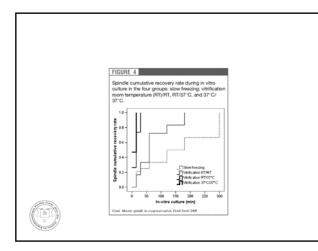

There is little dehate about the desirability of human oscyte ("egg") banking har plenty of discussion about its prospects. Egg banking is needed by young cancer patients before they undergo potentially sterilizing transmission and is a desirable about the end of the end of the end of the end of the about the end of the end of the end of the end of the the term of the end of the two terms of the end of t

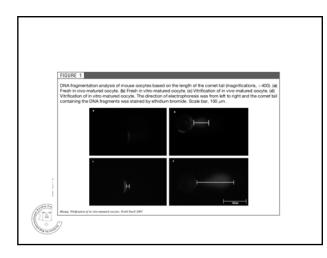
Oocyte vitrification—Women's emancipation set in stone

The techniques of vitrification of occytes and the subsequent warming process being used today are now producing results far superiors to the results that are obtained with slow-freezing techniques, and it would seem that this is the method of female territily preservation that will be widedy used in the nate future. The reportatsets of the use of this method bload limitate a renewed diffusion cocyte strengther for fettily preservation without a madical indication. (Fertil Steril¹⁹ 2003, **1**, **1**, **1**, **1**, **2**, **2**008 by American Society for Reproductive Medicine.)

Roy Homburg, F.R.C.O.G.^{a,b} Fulco van der Veen, M.D.⁴ erman J. Silber, M.D.⁴

ĺ

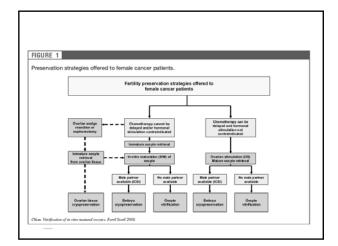

	of the characteristics that in	fluence cryosensitivity and suitab	lity for cryostorage [reproduced with
permission from (3)]			
Material	Primordial occyte	Full-size immature (GV stage) oocyte	Full-size mature (MII stage) oocyte
Availability	Abundant, always present	Scarce, only from antral follicles	Scarce, only at mid-cycle
Ease of collection	Easy, e.g. biopsy	Occyte retrieval	Oocyte retrieval
Size	<50 ±m	80-300 ±m (species dependent)	80-300 ±m (species dependent)
Support cells	Few, very small	Numerous corona/cumulus	Numerous corona/cumulus
Nuclear status	Resting prophase I, nuclear membrane	GV, has nuclear membrane	Resting MII, on temperature sensitive spindle, no nuclear membrane
Zona	No	Yes	Yes
Cortical granules	No	Central	Peripheral
Intracellular lipid	Litte	May be abundant	May be abundant
Metabolic rate	Low	Low	Low
Surface:volume ratio	High	Low	Low
GV: germinal vesicle; M	/II: metaphase II		
C C L HE L S Let			



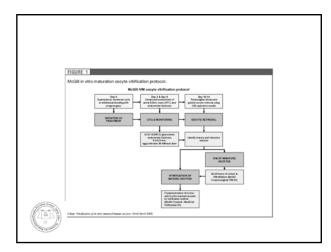
Meiotic spindle recovery is faster in vitrification of human oocytes compared to slow freezing

Patrižia Maria Cietti, B.Sc., Eleonora Porcu, M.D., Leonando Notamangelo, B.Sc., Otello Magrini, B.Sc., Antonia Baczocchi, M.D., and Stefano Venturoli, M.D. Republiche Medicine Unit, IVF and Infertility Center, Schwein–Majngli University Hospital, University of Bologna, Indynamical Science Science

TABLE 3			_	
Comparison of an (3 replicates).	euploidy rates in i	in vivo- and in vitro-matured mo		ytes with (%)
Groups	Treatment	No. of oocytes analyzed	Haploidy	Aneuploid
In vivo-matured	Fresh	105	99 (94.3)	6 (5.7)
In vitro-matured	Fresh	100	91 (91.0)	9 (9.0)
In vivo-matured In vitro-matured	Vitrification	86 114	78 (90.7) 102 (89.5)	8 (9.3) 12 (11.5)
Note: There were no : Huang. Mirification of in vitro		s in the same column (P<.06). 2007:		



blowing vitrification of	oocytes obtained from	m ovarian stimulatior
		IVM
		Singleton pregnancies (n = 4)
39 + 1	36 + 4	39 + 3
0	4 (66.7)	0
Singleton newborns (n = 9)	Multiple gestation newborns (n = 13)	Singleton newborns (n = 4)
3193.7 ± 376.8	2277.9 ± 395.7	4049.3 ± 413.7
0	9 (69)	0
0	0	0
7	4	2
	C Singleton pregnancies (n = 9)) 39 + 1 0 0 Singleton newborns (n = 9) 3193.7 ± 376.8	pregnancies (n = 9) pregnancies (n = 6) 0 39 + 1 36 + 4 0 4 (96.7) 0 Singleton Mutiple gestation newborns (n = 13) 3193.7 ± 376.8 2277.9 ± 395.7 0 9 (69) 9 (69) 9 (69) 160.7 ± 100.0 ± 100



Clinical outcomes of IVF-ET programs using vitrified/warmed	human mature cocutes vitrified by slust
nitrogen (SN ₂) from stimulated cycles.	inumari mature occytes withied by sidsi
No. of patients	28
No. of vitrified oocytes	426
No. of warmed oocytes	364
No. of survived oocytes (%) ^a	302 (85.1 ± 2.9, ^b 79.2–90.9°
No. of microinjected oocytes	218
No. of fertilized oocytes (%)	168 (77.4 ± 3.5, ^b 70.2-84.7°
No. of cleaved embryos (%)	158 (94.3 ± 2.1, ^b 90.1–98.5 ^c
No. of patients who underwent ET (%)	30 (100)
No. of pregnancies (%/ET)	13/30 (43.3)
No. of pregnancies (%/patient)	13/28 (46.4)
No. of multiple pregnancies	3/13 (23.1)
No. of miscarriages (%)	2/13 (15.4)
No. of deliveries/ongoing	4 ^d /7
No. of transferred embryos	120 (4.0 ± 0.2, ^b 3.6–4.4°)
Implantation rate (%)	17 (14.2)
* No. of intact oocytes after warming (%/vitrified oocytes).	
^b Mean ± SEM.	
° 95% confidence interval.	
^d Three singletons (male/male/female), one twin (male/male).	
Yoon. Human oocyte vitrification using SN ₂ . Fertil Steril 2007.	

Conclusion

IVM is still a method for special patients as the cancellation rate and implantation rate is less than in conventional IVF/ICSI. However, - the quality of the IVM derived MFII oocytes are as good as other oocytes and this is the background for opening new therapeutic modalities as the fate of these gamete seems to produce healthy offsprings:

Ē.

Oocyte banking Preserving fertility in women due to cancer treatment Preserving fertility in women due to late childbirth

All of this is a possibility due to IVM ova and vitrification