Follicular fluid hormonal and non-hormonal composition after GnRHa

Claus Yding Andersen, Professor, MSc, DMSc

Laboratory of Reproductive Biology University Hospital Copenhagen, University of Copenhagen Copenhagen, Denmark

E-mail: yding@rh.dk

Outline

- Effects of the mid-cycle surge of gonadotropins on the preovulatory follicle
- Follicular fluid hormone profile from GnRHa and hCG induced patients
- Profile of factors in follicular fluid from GnRHa and hCG induced patients of importance for oocyte maturation

GnRH agonist used for ovulation induction in women following a GnRH antagonist protocol

- GnRH antagonists protocols allows ovulation to be induced with either hCG or GnRH agonists
- GnRHa induces an endogenous flare-up of gonadotropins
- but also a pituitary down-regulation resulting in an attenuated surge of gonadotropins

The midcycle surge of gonadotropings: GnRHa versus the natural cycle

Hoff et al., 1983 Itskovits et al., 1991

Differences between GnRH agonist and hCG induced trigger of ovulation

- Duration and amplitude of the GnRHa induced ovulation is a lot shorter
- The total LH-like activity in hCG stimulated ovulation induction is a lot higher
- The GnRHa induced ovulation produces a combined FSH and LH surge

Main physiological functions of the midcycle surge of gonadotropins

- Induce resumption of meiosis of the enclosed oocyte
- Induce the ovulatory process itself and expulsion of oocyte
- Prepare the function of the corpus luteum in order to sustain the luteal phase

These functions have different sensitivity towards the amplitude and composition of the midcycle surge of gonadotropins – at least in rodent models!

Sensitivity of preovulatory follicles to gonadotropins

- At around 30 % of the preovulatory surge meiotic resumption is induced
- At around 85 % of the preovulatory surge ovulation itself is induced
- FSH induces LHR formation in the developing corpus luteum

Dose of LH (µg)	N	Number of follicles	Percentage luteinized	Percentage ovulated
0.25	5	12.6 ± 0.8	41.3 ± 19.6	_
0.50	5	12.0 ± 0.8	90.1 ± 5.0	_
1	4	11.5 ± 0.6	100	_
2	4	13.0 ± 0.4	94.4 ± 3.6	5.6 ± 3.6
4	4	13.5 ± 0.6	71.5 ± 19.7	28.5 ± 19.7
8	4	12.8 ± 1.0	54.0 ± 10.0	46.0 ± 10.0

Does GnRH agonist for triggering of ovulation induce changes in the preovulatory follicle different from those of hCG?

And to what extent does a possible change affect oocyte maturation and implantation potential?

Characteristics of follicular fluid from women receiving either Buserelin or hCG to induce ovulation

Claus Yding Andersen¹,

P Humaidan², H Ejdrup Bredkjær³, L Bungum², M Bungum², ML Grøndahl³, J Ingemanssen³ & LG Westergaard⁴

¹Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Copenhagen, Denmark, ²The Fertility Clinic, Skive Sygehus, Skive, Denmark ³The Fertility Clinic, Hvidovre Hospital, Hvidovre, Denmark ⁴The Fertility Clinic Trianglen, Lundevangsvej 12, Hellerup, Denmark

Aim

 To compare hormonal profiles of follicular fluid from women undergoing IVF/ICSI following a flexible GnRH antagonist protocol – randomized to final oocyte maturation with either hCG or a single bolus of GnRHa (Buserelin)

Open label prospective randomised two-centre study

FF from our original study in which the reproductive outcome was poor

Serum concentrations of oestradiol and progesterone (nmol/l) in GnRHa versus hCG-group (mean ± SD)

Day	Oestra	diol	Proges	sterone
	Buserelin	hCG	Buserelin	hCG
Ovulation induction	7.1 ± 4	6.4 ± 3	5.5 ± 5.8	5.0 ± 3.0
OPU	4.2 ± 2	4.4 ± 2	28 ± 18 ^c	49 ± 33 ^c
OPU + 7 days	2.9 ± 2 ^a	7.1 ± 4 ^a	39 ± 30 ^d	283 ± 205 ^d
OPU + 14 days	2.7 ± 2 ^b	5.6 ± 5 ^b	ND	ND

abcd: P<0.001 Student t-test

Number of samples

Ago	nist	hC	G
64	(32)	74	(37)
Neg. hCG	Pos. hCG	Neg. hCG	Pos. hCG
44 (22)	20 (10)	44 (22)	30 (15)

	Agonist			hCG	
FSH	LH	hCG	FSH	LH	hCG
$6,3 \pm 0,6$	11,1 ± 0,6	ND	$3,3 \pm 0,2$	$3,6 \pm 0,3$	139 ± 8
MI	II oocytes : 84	%	M II	oocytes: 63	%

No significant differences between pregnant and non-pregnant women

	Ago	nist	hC	CG C
Oe	estradiol (µmol/	(1)		
	1,9 ±	± 0,2	1,8 =	± 0,2
	Neg. hCG	Pos. hCG	Neg. hCG	Pos. hCG
	$1,9 \pm 0,2$	$1,9 \pm 0,9$	$1,9 \pm 0,2$	$1,7 \pm 0,2$

Progesterone (µmol/l)

70 :	± 4*	90	± 6*
Neg. hCG	Pos. hCG	Neg. hCG	Pos. hCG
73 ± 5**	48 ± 5**	86 ± 4	90 ± 6

Data: Mean ± SEM

	Ago	nist	hC	:G
In	hibin-A (ng/ml)			
	37,4	± 4,8	40,1	± 3,1
	Neg. hCG	Pos. hCG	Neg. hCG	Pos. hCG
	44,7 ± 7,1*	$24.8 \pm 2.3^*$	$37,6 \pm 4,3$	43,6 ± 5,1

Inhibin-B (ng/ml)

35,6	± 2,8		40,1 :	± 3,1
Neg. hCG	Pos. hCG	N	leg. hCG	Pos. hCG
$35,3 \pm 3,3$	36,7 ± 5,5	39	9,2 ± 4,2	41,3 ± 4,7

Data: Mean ± SEM

Conclusions

- The poor reproductive outcome of inducing ovulation by a GnRH agonist does not seem to be caused by inappropriate intrafollicular oocyte maturation
- Despite significant differences in FF levels of progesterone they were too small to explain a difference
- On the contrary more oocytes may actually reach MII
- What about factors affecting oocyte maturation directly and substances that affect the corpus luteum function.

Levels of the EGF-like peptide amphiregulin are significantly reduced in follicular fluid after GnRHa triggering of final oocyte maturation

P.Humaidan ¹, L.G.Westergaard ², AL.Mikkelsen ³, M. Fukuda ⁴ and

C.Yding Andersen ⁵

¹The Fertility Clinic, Skive Regional Hospital (Viborg), Denmark,
, ² The Fertility Clinic, Odense University Hospital, Denmark

³ The Fertility Clinic, Holbæk Hospital, Denmark,,

⁴ M and K Health Institute, Ako, Japan

⁵ Laboratory of Reproductive Biology, University Hospital of Copenhagen.

Materials and methods

FF study samples:

- Two FF samples collected from each patient
- First follicle punctured bilaterally without contamination of flushing media, centrifuged (500 x g), supernatant stored at -20°C.

Results

96 patients randomised

hCG 48 cycles **GnRHa 48 cycles**

No significant differences between the GnRHa and hCG group:

- Age, BMI, base-line FSH and LH
- Infertility diagnosis
- Previous IVF/ICSI attempts
- Stimulation

Aims of study

To compare FF levels of amphiregulin in patients undergoing IVF/ICSI following a flexible GnRH antagonist protocol:

- Randomisation to final oocyte maturation with either 10.000 IU hCG or 0.5 mg of GnRHa (Buserelin)
- Open label prospective randomised three-centre study
- Controls:
 - 15 FF from 12-15 mm preovulatory follicles prior to ovulation induction
 - 15 FF from small (1-8 mm) antral follicles (natural cycle)
 - 12 FF from preovulatory follicles aspirated after endogenous surge (natural cycle)

Regulation of oocyte maturation

Amphiregulin:

- EGF-like peptide produced by the mural granulosa gells but not the cumulus cells
- Released by the LH-activity of the mid-cycle surge
- Induce resumption of meiosis

FSH:

Induce yet unidentified substances that promote oocyte maturation (e.g. meiosis activating substance)

Amphiregulin

LH/hCG

Prolactin:

- Produced by the pituitary, endometrium and granulosa cells
- PRL inhibits estradiol production and stimulates progesterone production in granulosa cells
- **♦ PRL also interferes with FSH action by suppressing LH receptor expression at sites downstream of cAMP synthesis in GC**
- Analysis of PRL knockout mice models has led to a conclusion that PRL is essential for corpus luteum functions

Follicular Fluid concentration of E2, P4, Inhibin B, VEGF, Amphiregulin and Prolactin

	TOTAL	GnRHa	hCG	GnRHa vs hCG t-test
N: OPU	96	48	48	
N: FF aspirates	146	73	73	
E2, ng/ml	305 ± 17	328 ± 20	282 ± 28	NS
P4, ng/ml	13297 ± 466	11758 ± 629	14835 ± 647	0.0004
Inhibin B, ng/ml	27 ± 1.6	25 ± 1.9	29 ± 2.5	NS
VEGF, pg/ml	1195 ± 61	1199 ± 83	1192 ± 91	NS
Amphiregulin, ng/ml	62 ± 3.5	51 ± 3.5	71 ± 6.0	0.003
Prolactin, ng/ml	17,2 ± 1,9	17,2 ± 2,3	17,3 ± 3,1	NS

Data are mean ± SEM

Follicular fluid concentration of VEGF and Amphiregulin in controls versus GnRHa and hCG

	Small antral	Preo	vulatory fo	llicular flui	id
	follicles	Before the midcycle surge	Natural cycle	GnRHa	hGG
No. FF aspirates	15	15	12	73	73
VEGF, pg/ml	527 ± 517 ^a	ND	2248 ± 924 ^b	1199 ± 83°	1192 ± 91°
Amphiregulin, ng/ml	1.5 ± 1.5 ^d	< 0.5	68 ± 25 ^e	51 ± 3.5 ^f	71 ± 6.0 ^g

OOCYTE MATURATION, FERTILIZATION AND EMBRYO DEVELOPMENT

	TOTAL	GnRHa	hCG	Fisher's Exact Two-tailed
<u>IVF</u> :				
N: oocyter	685	329	356	
N: Fertilized (%)	471 (69%)	237 (72%)	234 (66%)	0.08
IVF : N embryos (% of fertilized)	405 (86%)	210 (89%)	195 (83%)	NS
ICSI:				
N: oocyter	145	78	67	
N: MII (%)	124 (86%)	72 (92%)	52 (78%)	0.017
N: Fertilized of M II (%)	112 (90%)	61 (85%)	51 (98%)	0.013
ICSI: N embryos (% of fertilized)	107(96%)	57 (93%)	50 (98%)	NS
IVF + ICSI:				
Transferrable N (% of oocytes retrieved)	309 (45%)	167 (51%)	142 (40%)	0.005
Transferrable per cycle (mean±SEM)	3.2 ± 0.3	3.5 ± 0.4	3.0 ± 0.4	NS
Transferred per cycle (mean±SEM)	1.65 ± 0.06	1.67 ± 0.07	1.63 ± 0.1	NS

Triggering ovulation with GnRHa does not compromise embyro implantation rates

Triggering ovulation not compromise en			
	GnRH agonist	hCG	P
Oocytes (n)	327	288	ns
Oocytes (x)	9.1 ± 4.01	10.3 ± 6.3	ns
Fertilization rate (%)	80	65	ns
Oocytes MI (%)	6	8	ns
Oocytes MII (%) Embryo quality (%)	70	76	ns
Grade 1	35	50	ns
Grade 2	52	41	ns
Grade 3	78	8	ns
Multinucleated	4	1	ns
Embryos with >8 blastomeres (x)	1.5 ± 1.2	1.9 ± 1.3	ns

Triggering ovulation with GnRH agonists does not compromise embryo implantation rates.			
Austra chartene posiderople visto fernicenem, Fernichten Step O. Eddar-Creva T. Kof-	GnRH agonist	hCG	P
No. recipients	30	30	
Oocytes donated	5.9 ± 2.4	5.4 ± 3.1	ns
Pregnancies/transfer (%)	55	59	ns
Biochemical pregnancy (%)	5	9	ns
Clinical pregnancy (%)	84	90	ns
Implantation rate (%)	29	32	ns

Conclusions

- Despite lower levels of progesterone in the GnRHa group, the differences in FF hormone profiles determined up until does not raise concern on the use of GnRHa for ovulation induction
- hCG and GnRHa induce oocyte maturation with similar efficacy and resulting embryos are equally good
- The GnRHa trigger may create slightly more embryos perhaps through a combined effect of LH and FSH
- Results are encouraging for a continued development of GnRHa protocols to triggering ovulation

REGION

The Copenhagen Workshop on Cryopreservation of Ovarian Tissue

Learning the technique, hands on experience

The Copenhagen Workshop on Cryopreservation of Ovarian

Tissue is a three-day laboratory and lecture course for those
interested in learning the technique behind the Danish
Cryopreservation Programme.

For more information go to

www.cryoovary.dk

or contact the course coordinator: stine.gry.kristensen@ rh.regionh.dk Course dates: March 15-17, 2011

