

content

- Predictions: OHSS forever?
- No OHSS post agonist trigger!
- OHSS: Is it still a problem?
- Failures?
- How high can we go?
- Mechanism?
- Unfortunate publications (3)
- Agonist trigger: side benefits.

Predictions: Severe OHSS

"Severe OHSS will remain a complication of IVF cycles despite all attempts of prevention. Patients need to be advised of the risk and incidence of severe OHSS prior to embarking on ovulation stimulation therapy to enable them to give informed consent for assisted conception treatment." R.G. Forman, 1999.

"An epidemic of severe OHSS: a price we have to pay"? Y. Abramov et al, 1999.

"These are the cases in which severe OHSS is probably not preventable with current strategies except cancellation of the cycle...None of the strategies currently employed to avert severe OHSS ...completely prevents the condition". P.E. Egbase, 2000.

Induction of LH surge and oocyte maturation by GnRH analogue (Buserelin) in women undergoing ovarian stimulation for IVF

"No signs of OHSS were observed in 2 patients who on previous stimulation developed severe OHSS.... GnRHa offers a new means by which OHSS can be prevented."

Ovarian hyperstimulation syndrome after using gonadotrophin-releasing hormone analogue as a trigger of ovulation: causes and implications

S.Kol¹, N.Lewit and J.Itskovitz-Eldor

In summary, the use of GnRHa as an ovulation trigger reliably eliminates the risk of clinically significant OHSS. To

Past predictions of the future

 "We don't like their sound, and guitar music is on the way out" Decca Recordings Co. rejecting the Beatles, 1962.

 "Stocks have reached what looks like a permanently high plateau". Irving Fisher, Professor of Economics. Yale University, 1929.

 "\$100 million is way too much to pay for Microsoft" IBM 1982.

 "Who the hell wants to hear actors talks?" H.M. Warner, Warner Brothers, 1927.

16 publications

Agonist: 2005 patients, not a single case of OHSS!

hCG: 92 cases in 1810 patients, 5.1%

Reference	Trial type	Oocyte	Ovulation	n	OHSS % (n)
		source	trigger		
Babayof et al 2006	RCT, high risk	own	GnRHa	15	0 (0/13)
			hCG	13	31(4/13)
Engamnn et al 2008	RCT, high risk	own	GnRHa	33	0 (0/33)
			hCG	32	31 (10/32)
Acevedo et al 2006	RCT	donors	GnRHa	30	0 (0/30)
			hCG	30	17 (5/30)
Bodri et al 2009	Retrospective	donors	GnRHa	1046	0 (0/1046)
			hCG	1031	1.3 (13/1031)
Griesinger et al 2010	Observational,	own	GnRHa	40	0 (0/40)
	High risk				
Humaidan et al 2009	RCT	own	GnRHa	152	0 (0/152)
			hCG	150	2 (3/150)
Engmann et al 2006	Retrospective, case-	own	GnRHa	23	0 (0/23)
3	controlled, high risk		hCG	23	4 (1/23)
Manzanares et al 2009	Retrospective case-	own	GnRHa	42	0 (0/42)
	control, high risk		hCG - cancelled		
Hernandez et al 2009	Retrospective	donors	GnRHa	254	0 (0/254)
			hCG	175	6 (10/175)
Orvieto et al 2006	Retrospective, high	own	GnRHa	82	0 (0/82)
	risk		hCG	69	7 (5/69)
Shapiro et al 2007	Retrospective, high	donors	GnRHa	32	0 (0/32)
	risk: agonist arm only		hCG	42	1 (1/42)
Sismanoglu et al 2009	RCT	donors	GnRHa	44	0 (0/44)
Sisilanio grave ai 2003			hCG	44	7 (3/44)
Humaidan et al 2009	Observational, high	own	GnRH, luteal rescue	12	8 (1/12)
	risk		with hCG 1500IU		
Galindo et al 2009	RCT	donors	GnRHa	106	0 (0/106)
			hCG	106	8 (9/106)
Melo at al 2009	RCT	donors	GnRHa	50	0 (0/50)
1.1310 dt d1 2009			hCG	50	16(8/50)
Shahrokh et al 2010	RCT, high risk	own	GnRHa	4	0 (0/45)
STATISTICS AT 2010	, ,		hCG	45	15 (33)

OHSS: Is it still a problem?

• "We did not have a single case in years"

Incidence of OHSS

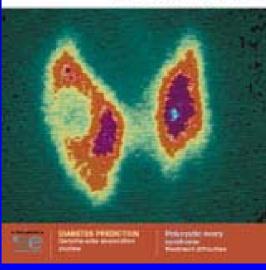
Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles

Evangelos G. Papanikolaou, M.D., Ph.D., Cristina Pozzobon, M.D.,
Efstratios M. Kolibianakis, M.D., Ph.D., Michel Camus, M.D., Herman Tournaye, M.D., Ph.D.,
Human M. Fatemi, M.D., Andre Van Steirteghem, M.D., Ph.D., and Paul Devroey, M.D., Ph.D.
Centre for Reproductive Medicine, University Hospital, Dutch-Speaking Brussels Free University, Brussels, Belgium

Objective: to determine OHSS incidence in 2,524 antagonist-based cycles (1801 patients).

Results: fifty three patients (2%) were hospitalized because of OHSS.

Conclusions: clinically significant OHSS is a limitation even in antagonist cycles.


"There is more than ever an urgent need for alternative final oocyte maturation – triggering medication"

Incidence of OHSS: ENGAGE Study

- Measures to minimize OHSS:
 - Exclusion criteria: history of OHSS, PCOS, AFC>20.
 - In treatment: Lower hCG dose, coasting for up to 3 days, cancellation.
- Incidence: 100 patients (out of 1506, 6.6%) developed OHSS, moderate-severe: 51 (3.4%) patients.

AUGUST 2009

A woman with polycystic ovary syndrome treated for infertility by *in vitro* fertilization who developed severe OHSS.

- •Describe the pathophysiology of PCOS.
- •Identify outcomes in the management of infertility in PCOS.
- •List risk factors for ovarian hyperstimulation syndrome.
- •Describe the management of ovarian hyperstimulation syndrome

GnRHa trigger: does it always abolish OHSS?

Human Reproduction vol.8 no.10 pp.1628-1631, 1993

Triggering of ovulation using a gonadotrophin-releasing hormone agonist does not prevent ovarian hyperstimulation syndrome

Three IUI patients
Nasal GnRH-a, weak LH response.
Mild to moderate OHSS, no hospitalizations

Prevention of ovarian hyperstimulation syndrome, 2008

"However, some risk of ovarian hyperstimulation remains, as illustrated in a report of 48 cycles of ovarian stimulation with hMG followed by an ovulatory trigger using a nasal application of GnRH agonists, where moderate OHSS was observed in three instances."

16	1	. 1.		4.2	
In	mil	111	œa		
	Pu	U L L	·	ULU	

Agonist: 2005 patients, not a single case of OHSS!

hCG: 92 cases in 1810 patients, 5.1%

Reference	Trial type	Oocyte source	Ovulation trigger	n	OHSS % (n)
Babayof et al 2006	RCT, high risk	own	GnRHa	15	0 (0/13)
2000			hCG	13	31(4/13)
Engamnn et al 2008	RCT, high risk	own	GnRHa	33	0 (0/33)
			hCG	32	31 (10/32)
Acevedo et al 2006	RCT	donors	GnRHa	30	0 (0/30)
			hCG	30	17 (5/30)
Bodri et al 2009	Retrospective	donors	GnRHa	1046	0 (0/1046)
			hCG	1031	1.3 (13/1031)
Griesinger et al 2010	Observational, High risk	own	GnRHa	40	0 (0/40)
Humaidan et al 2009	RCT	own	GnRHa	152	0 (0/152)
			hCG	150	2 (3/150)
Engmann et al 2006	Retrospective, case-	own	GnRHa	23	0 (0/23)
	controlled, high risk		hCG	23	4 (1/23)
Manzanares et al 2009	Retrospective case- control, high risk	own	GnRHa hCG - cancelled	42	0 (0/42)
Hernandez et al 2009	Retrospective	donors	GnRHa	254	0 (0/254)
Hemandez et al 2009	rea ospective	donois	hCG	175	6 (10/175)
Orvieto et al 2006	Retrospective, high	own	GnRHa	82	0 (0/82)
2000	risk		hCG	69	7 (5/69)
Shapiro et al 2007	Retrospective, high	donors	GnRHa	32	0 (0/32)
	risk: agonist arm only		hCG	42	1 (1/42)
Sismanoglu et al 2009	RCT	donors	GnRHa	44	0 (0/44)
			hCG	44	7 (3/44)
Humaidan et al 2009	Observational, high risk	own	GnRH, luteal rescue with hCG 1500IU	12	8 (1/12)
Galindo et al 2009	RCT	donors	GnRHa	106	0 (0/106)
			hCG	106	8 (9/106)
Melo at al 2009	RCT	donors	GnRHa	50	0 (0/50)
			hCG	50	16(8/50)
Shahrokh et al 2010	RCT, high risk	own	GnRHa	4	0 (0/45)
			hCG	45	15 (33)

Imoedemhe D, Chan R, Pacpaco E, et al. Preventing OHSS in at-risk patients: evidence from a long-term prospective study. Hum Reprod 1999; 14: 102–3.

- 708 PCO patients
- Mean E2 on trigger day=7817pg/ml
- 1 patient developed severe OHSS, hCG luteal support.

Table II Main characteristics and ovarian hyperstimulation syndrome (OHSS) rate in studies on GnRHa triggering of final oocyte maturation

Reference	Trial type	GnRH-antagonist protocol	O vulation trigger	n	Moderate – severe OHSS % (n)
Humaidan et al. (2005)	RCT	Flexible, multiple dose	GnRHa hCG	55 67	0 (0/55) 0 (0/67)
Kolibianakis et al. (2005)	RCT	Fixed, multiple dose	GnRHa hCG	50 54	*
Pirard et al. (2006)	RCT	Flexible, multiple dose	GnRHa hCG	6 6	*
Humaidan et al. (2006)	RCT	Flexible, multiple dose	GnRHa hCG	13 15	0 (0/13) 0 (0/15)
Babayof et al. (2006)	RCT	Flexible, multiple dose	GnRHa hCG	15 13	0 (0/15) 31 (4/13)
Engmann et al. (2008)	RCT	Flexible, multiple dose OCP/GnRHa	GnRHa hCG	33 32	0 (0/33) 31 (10/32)
Humaidan et al. (2009)	RCT	Flexible, multiple dose	GnRHa hCG	152 150	0 (0/152) 2 (3/150)
Humaidan (2009)	Observational uncontrolled OHSS high-risk	Flexible, multiple dose	GnRHa	12	8 (1/12- late)

^{* =} not reported. OCP = oral contraceptive.

Akush Ginekol (Sofiia). 2008;47(4):16-9.

Protocol with GnRH-antagonist and ovulation trigger with GnRH-agonist in risk patients--a reliable method of prophylactic of OHSS. Kovachev E
[Article in Bulgarian]

29 PCO patients.
Mean 22.5 oocytes.
1 patients developed severe late OHSS
Further information: E2 on trigger day=2800 pg/ml,
10 oocytes retrieved. Luteal support: P only.

Zhonghua Fu Chan Ke Za Zhi. 1999 Feb;34(2):94-6.

Application of gonadotropin-releasing hormone agonist for triggering ovulation in high risk gonadotropin stimulating cycles of infertile polycystic ovary syndrome patients. Dong H, Chen S, Xing F

[Article in Chinese]

14 PCO patients, mean E2=8,379 \pm 2,958 pmol/l 1 patient developed moderate OHSS.

TABLE 2 Outcome of ovarian stimulation. Study group Control group (n = 30)(n = 29)P value Duration of ovarian stimulation (days) 9.9 ± 1.7 9.6 ± 1.7 NS Total dose of gonadotropins (IU) NS 1589 ± 511 1527 ± 534 Serum E₂ on day of trigger (pg/mL) 2645 + 11012658 + 1122NS Oocytes (n) 20.2 ± 9.9 18.8 ± 10.4 NS Proportion of M11 oocytes (%) NS 81.0 ± 16.3 83.8 ± 13.2 Fertilization rate (%) 71.6 ± 14.1 74.9 ± 17.3 NS Embryos transfered (n) 2.0 ± 0.2 2.2 ± 0.6 NS Embryos frozen (n) 3.9 ± 4.4 4.3 ± 4.7 NS

 36.6 ± 22.2

 485 ± 219

 283 ± 216

 25 ± 14

 28 ± 8

 129.0 ± 77.4

 1320 ± 695

 663 ± 556

 46 ± 50

 117 ± 61

< .01

< .01

< .01

< .01

NS

Fresh transfer

		-00	 	 	

Serum E2 on day of embryo transfer (pg/mL)

Serum P on day of embryo transfer (ng/mL)

Enomann, GnRH avonist triover and OHSS prevention. Fertil Steril 2008.

Midluteal ovarian volume (cm³)

Midluteal serum E2 (pg/mL)

Midluteal serum P (ng/mL)

	_	_	_
1 0	м		
1 "	w		u

Outcome of cycle.

	Study group	Control group	Odds ratio (95% CI)	P value
Primary end points				
OHSS (intention to treat)				
Total n, (%)	0/33 (0)	10/32 (31.3)	0 (0-0.26) ^a	< .01
Moderate/severe, n (%)	0/33 (0)	5/32 (15.6)	0 (0-0.74) ^a	.02
OHSS (per protocol)				
Total, n (%)	0/30 (0)	10/29 (34.5)	0 (0-0.26) ^a	< .01
Moderate/Severe, n (%)	0/30 (0)	5/29 (17.2)	0 (0-0.73) ^a	.02
Secondary end point (per protoco	ol)			
Implantation rate, n (%)	22/61 (36)	20/64 (31)	1.18 (0.52-2.65)	.69
Other end points (per protocol)				
Positive pregnancy, n (%)	19/30 (63.3)	18/29 (62.1)	1.06 (0.37-3.0)	.92
Clinical pregnancy rate, n (%)	17/30 (56.7)	15/29 (51.7)	1.22 (0.4-3.4)	.45
Ongoing pregnancy rate, n (%)	16/30 (53.3)	14/29 (48.3)	1.22 (0.4-3.4)	.45

^a The estimates of these odds ratios are zero, because no patient developed OHSS in the study group.

Engmann. GnRH agonist trigger and OHSS prevention. Fertil Steril 2008.

TABLE 1

Baseline characteristics and outcome of ovarian stimulation.

	First cycle	Second cycle	P
No. of patients	42	42	
Age, years	32.9 ± 3.1	33.8 ± 4.2	NS
Serum levels on day 3:			
FSH, mIU/mL	6 ± 2.58	6.2 ± 2.8	NS
LH, mIU/mL	6.1 ± 3.7	6 ± 3.4	NS
E ₂ , pg/mL	56 ± 33	44.1 ± 24.24	NS
GnRH antagonist, ampoules	_	3.9 ± 1.4	_
COH, days	10.4 ± 2.1	9.78 + 1.49	NS
FSH, IU	2259.66 ± 958	1943 ± 1158	NS
E ₂ on day of hCG, pg/mL	4809.6 ± 2947.7	4518.5 ± 2118.85	NS
Recruited follicles:			
>18 mm	13.2 ± 7.5	15.43 ± 7.3	NS
15–17 mm	8.2 ± 6.7	9.1 ± 5.3	NS
Oocytes retrieved	Cancelled	12.6 ± 6.8	_
OHSS	0	0	_
Metaphase II oocytes, %	_	93	_
Metaphase I oocytes, %	_	2.2	_
Embryo grade, %:			
G1	_	48	_
G2	_	30	_
G3	_	17	_
Multinucleated embryos, %	_	4.5	_
Fertilization rate	_	69	_

Note: Data are mean \pm SD unless otherwise indicated. NS: not significant.

Manzanares. Triggering ovulation with GnRH agonist in PCO. Fertil Steril 2009.

Frozen-thawed cycles

TABLE 2

Clinical results of frozen-thawed cycle.

	First cycle	Second cycle
No. of cycles	42	42
Embryos transferred, mean ± SD	-	2.5 ± 0.6
Pregnancy/transfer rate, n (%)	-	14/42 (33)
Biochemical pregnancies, n (%)	-	1/14 (7)
Miscarriages, n (%)	_	1/13 (7.6)
Ongoing pregnancies, n (%)	_	12/14 (85)
Twin pregnancies, n (%)	_	2/14 (14.2)

Manzanares. Triggering ovulation with GnRH agonist in PCO. Fertil Steril 2009.

How high can we go?

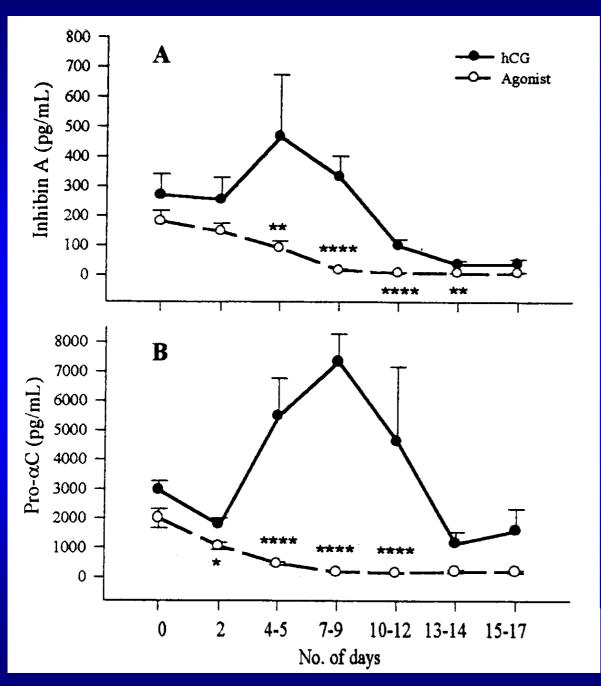
Short communication - Clinical protocol using for ovarian stimulation in high responders - S Kol & M Muchtar

Table 1. Relevant clinical details of six patients. Oestradiol in pmol/l, LH in IU/l.

Subject of	No. of ampoules of Gonal F	No. of ampoules Luveris	Oestradiol max	Last LH ^a	No. of oocytes retrieved	No. of embryos	Mid-luteal LH
1	34	3	14,211	2.0	9	4	0
2	24	4	24,669	1.5	18	8	0
3	27	4	33,769	1.7	31	20	1.9
4	32	5	12,177	1.0	38	23	1.6
5	24	3	36,560	4.6	71	52	0.9
6	28	3	17,868	1.8	29	16	1.4
Mean	28	3.67	23,209	2.1	32.7	20.5	0.97
SD	3.85	0.82	10,228	1.27	21.4	17.5	0.82

^aOn the day ovulation was triggered with decapeptyl.

Mechanism?


Lower levels of inhibin A and pro-alpha C during the luteal phase after triggering oocyte maturation with GnRH agonist versus hCG

Nevo et al, Fertil Steril 79:1123, 2003

Clinical characteristics

	Agonist $(n = 8)$	$ hCG^a \\ (n = 8) $
Age (years)	28.7 ± 5.4	30.6 ± 4.4
Duration of infertility (years)	4.3 ± 1.9	5.9 ± 4.2
No. of patients with primary infertility	7	6
Cause of infertility (no.):		
Male factor	6	6
Unexplained	1	2
Mechanical	1	
Treatment cycle no.	1.62 ± 0.9	1.75 ± 0.8
Duration of FSH treatment (days)	9 ± 1.2	9.5 ± 1.6
No. of follicles ≥11 mm at day 0	11.75 ± 3.3	15 ± 4.8
No. of oocytes retrieved	9.25 ± 3.8	11 ± 5.5
No. of clinical pregnancies	4	4

 $^{^{}a}P = NS$ for all characteristics.

Luteal phase

Natural cycle day 7-9= 75 pg/ml vs. 18

Natural cycle day 7-9=750 pg/ml vs. 184

Nevo et al, 2003

Summary

- The lower levels of luteal steroidal and nonsteroidal hormones reflect luteolysis, and may explain the mechanism of OHSS prevention by GnRH-a.
- Pregnancy post agonist trigger does not rescue the CL!!!

Clinical use of agonist trigger opinion

- Primarily in the context of OHSS prevention.
- Prevention is **total.**
- A major reason to use GnRH antagonists in ovarian stimulation of high-risk patients: to keep the option of agonist trigger if needed.
- "side-benefits"

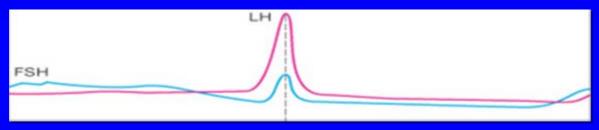
Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist assisted reproductive technology cycles. 11/2010

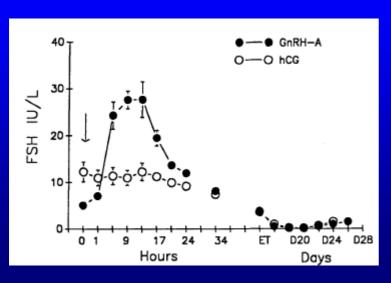
Plain language summary: "We recommend that GnRH agonist as a final oocyte maturation trigger should be not used".

Beyond the context of OHSS: Patient-friendly luteal phase

- Abdominal pain and discomfort due to enlarged ovaries.
- How to minimize ovarian volume post oocyte retrieval?

TABLE 2			
Outcome of ovarian stimulation.			
	Study group (n = 30)	Control group (n = 29)	<i>P</i> value
Duration of ovarian stimulation (days)	9.9 ± 1.7	9.6 ± 1.7	NS
Total dose of gonadotropins (IU)	1589 ± 511	1527 ± 534	NS
Serum E ₂ on day of trigger (pg/mL)	2645 ± 1101	2658 ± 1122	NS
Oocytes (n)	20.2 ± 9.9	18.8 ± 10.4	NS
Proportion of M11 oocytes (%)	81.0 ± 16.3	83.8 ± 13.2	NS
Fertilization rate (%)	71.6 ± 14.1	74.9 ± 17.3	NS
Embryos transfered (n)	2.0 ± 0.2	2.2 ± 0.6	NS
Embryos frozen (n)	3.9 ± 4.4	4.3 ± 4.7	NS
Midluteal ovarian volume (cm³)	36.6 ± 22.2	129.0 ± 77.4	< .01
Serum E ₂ on day of embryo transfer (pg/mL)	485 ± 219	1320 ± 695	< .01
Midluteal serum E ₂ (pg/mL)	283 ± 216	663 ± 556	< .01
Serum P on day of embryo transfer (ng/mL)	25 ± 14	117 ± 61	< .01
Midluteal serum P (ng/mL)	28 ± 8	46 ± 50	NS
Engmann. GnRH agonist trigger and OHSS prevention. Fertil Steril 2008.			

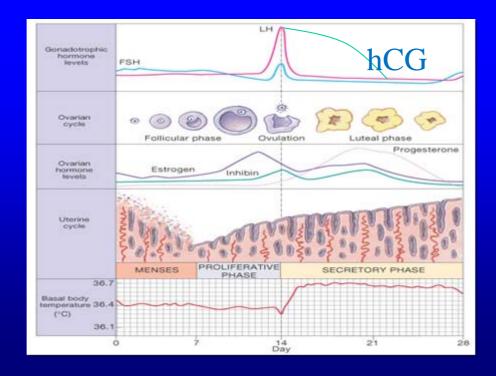

...and when OHSS is not the main issue?...


"We did find differences in the duration of the luteal phase: The period to menstrual onset in the non-hCG group was significantly shorter (10.2 days vs. 5.2 days; P<.001). Also, 42% of those who received hCG reported subjective complaints (mostly abdominal discomfort), whereas this percentage was 0% in those who received GnRH agonist to trigger ovulation.

No OHSS was observed in either cohort."

hCG does not imitate physiology!

LH surge goes together with FSH surge. Is FSH surge Redundant?



Gonen et al 1990

Dual role of hCG trigger

- Final oocyte maturation.
- Early luteal phase stimulation.
- Same dose for both functions?

Can pregnancy rate be improved in gonadotropinreleasing hormone (GnRH) antagonist cycles by administering GnRH agonist before oocyte retrieval? A prospective, randomized study

Morey Schachter, M.D., Shevach Friedler, M.D., Raphael Ron-El, M.D., Ariel L. Zimmerman, M.D., Deborah Strassburger, Ph.D., Orna Bern, Ph.D., and Arieh Raziel, M.D.

IVF and Infertility Unit, Assaf Harofeh Medical Center, Tel Aviv University, Zerifin, Israel

The pregnancy rate in completed cycles and the ongoing pregnancy rate per ET were significantly higher in the study group than in the control group.

Is possible that in some patients FSH surge is needed?

F&S 2008;90:1087

Reproductive BioMedicine Online (2010) 21, 590-592

www.sciencedirect.com www.rbmonline.com

COMMENTARY

LH (as HCG) and FSH surges for final oocyte maturation: sometimes it takes two to tango?

Shahar Kol a,*, Peter Humaidan b

^a Rambam Medical Center, IVF Unit, Aliyah Street, Haifa, Israel; ^b The Fertility Clinic, Skive Regional Hospital, Reservej 25, 7800 Skive, Denmark

^{*} Corresponding author. E-mail address: skol@rambam.health.gov.il (S Kol).

So, why do we routinely stick to hCG trigger?

Will agonist trigger replace hCG globally?

Will hCG be used for luteal support only?

