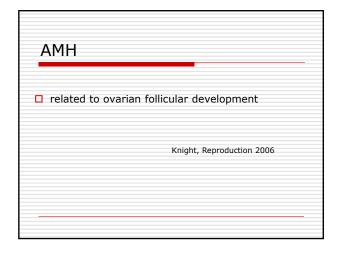
Serum and follicular hormonal profile in natural IVF cycles

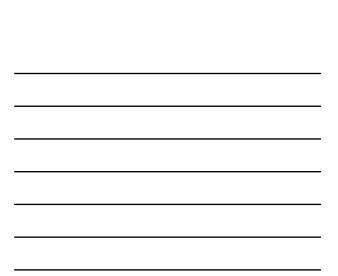

Vrtačnik Bokal E, Jančar N, Virant Klun I

Reproductive Unit, Department of Obstetrics and Gynaecolgy, University Medical Centre Ljubljana

Aim

serum and follicular hormone status
 women attending IVF program
 focus on AMH and LH

AM	H	
b 0' 0 re 0 st	eta family of g varian granulo ne of the mos eserve - mark cronlgy related	te transforming growth factor growth factors produced in osa cells t important markers of ovarian er of ovarian aging d to the number of retrieved marker of ovarian response in Van Rooij, HR 2002
N	/F treatment	Van Rooij, HR 2002 De Vet, Fertil Steril 2002


Follicular AMH

positively associated with fertilization rate

predicts the implantation potential

Takahashi, Fertil Steril 2008

Fanchin, J Clin Endocrinol & Metabol 2007

_	
	are required for oocyte and embryo developement
	granulosa cells in small antral follicles start to express FSH receptors which are dependent on FSH
	FSH stimulation causes GC to express aromatase and LH receptors
	converts androgens to estrogens

Aim

the pregnancy rate is lower in natural cycles (NC) than in stimulated cycles (COH)
 we aimed at finding an explanation for this difference by comparing follicular and serum AMH, LH, FSH, E2, P, AND concentrations between the NC and COH groups

Inclusion criteria

tubal factor infertility
 FSH, LH, PRL (day 3)- normal
 semen analysis had to be normal

Design we included 30 women undergoing NC IVF and 30 women undergoing COH IVF

Monitoring - NC on day 9: US,E2, the urine sample was tested for the presence of LH surge

- □ dominant follicle ≥ 16 mm, serum E2 exceeded 0.40 nmol/l, and no LH surge was detected, 5000 IU of HCG
- OR was done 31-32 hours after HCG administration

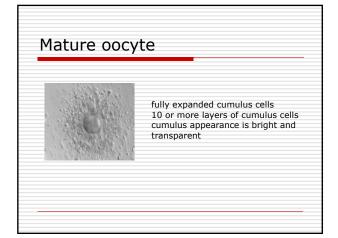
Ovarian stimulation - COH GnRH ant. and rFSH 225 IU of gonadotropin folitrophin alpha - on day 2 GnRH antagonist cetrorelix acetate (0.25 mg)-dominant follicle 13 mm When at least three follicles measured ≥ 17 mm - HCG 10 000 IU OR was carried out 34-36 hours after HCG

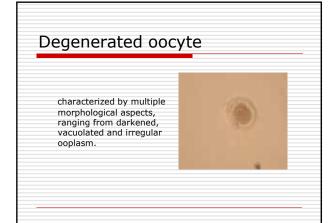
olicular fluid analysis
Each follicle was aspirated separately
Immediately after removal of the oocyte, volume of FF was measured, and 1 ml from each aspirate containing an oocyte was separated.
We pooled FFs from empty follicles - separated 1 ml of FF.
FFs were centrifuged and supernatants were stored at -20 °C for subsequent collective analysis of AMH, LH,FSH, E2, P, AND

Serum analysis

on the day of OR blood samples were obtained
 AMH, LH,FSH, E2, P, AND

Oocyte quality


mature


immature

degenerated

Maturity of oocytes (IVF) according to the cumulus mass appearance and consisted of three components: number of cumulus mass layers cumulus expansion contact between cumulus cells and oocyte

Immature oocyte ight, dense cumulus cells poor expansion around oocyte 3 or less layers of cumulus cells cumulus appearance is dark

6

Embryo quality

was assesed on day 5 according to developmental stage of embryos and were divided to:

> arrested embryos < 10 cells morulae blastocysts

General data NC group (n = 30)COH group (n = 30)Parameter P value Age (years) 34.9 ± 3.4 33.6 ± 4.1 NS BMI (kg/m2) 21.9 ± 2.5 23.6 ± 4.3 NS FSH (IU/I) 6.7 ± 4.1 6.7 ± 2.4 NS LH (IU/I) 5.1 ± 3.4 6.0 ± 3.9 NS Prolactin 12.2 ± 5.7 11.0 ± 5.9 NS (ng/ml) E2 (nmol/l) 0.6 ± 0.2 4.3 ± 3.1 < 0.001

oocytes per	NC [n(%)] 0.8 ± 0.5	COH [n(%)]	p 0.001
puncture			
immature	3 (12.5)	12 (9.4)	NS
mature	21 (87.5)	112(87.5)	NS
degenerated	0	4 (3.1)	NS



20 (02 2)		
20 (83.3)	81 (63.3)	NS
4 (20%)	23 (28.4%)	NS
3 (15%)	16 (19.8%)	NS
11 (55%)	35 (43.2%)	NS
	3 (15%)	3 (15%) 16 (19.8%)

Serum nor	monal levels (NS vs COH)						
Parameter	NC (n=29)	COH(n=29)	P value				
AMH (ng/ml)	2.3 ± 2.0	1.4 ± 0.9	< 0.001				
LH (IU/I)	32.6 ± 19.5	0.8 ± 0.8	< 0.001				
FSH (IU/I)	13.1 ± 5.4	6.5 ± 2.7	< 0.001				
progesterone (nmol/l)	2.4 ± 3.5	18.7 ± 38.0	< 0.001				
oestradiol (nmol/l)	0.4 ± 0.1	4.3 ± 2.1	< 0.001				
androstendione (nmol/l)	6.1 ± 2.6	8.0 ± 4.0	0.01				

	rmonal levels (NS vs COH)					
Parameter	NC(n-20)	COH(n - 122)	P value			
Parameter	NC (n=29)	COH(n=132)	P value			
AMH (ng/ml)	6.1 ± 5.5	2.5 ± 1.7	< 0.001			
LH (IU/I)	15.6 ± 8.6	2.0 ± 4.6	< 0.001			
FSH (IU/I)	5.9 ± 3.0	7.1 ± 10.4	NS			
progesterone	26482.2 ±	33276.8 ±	0.05			
(nmol/l)	12942.7	15827.4				
oestradiol	7447.5 ±	3356.7 ±	< 0.001			
(nmol/l)	4401.4	2742.8				
androstendione	112.5 ± 16.1	102.5 ± 12.8	0.001			
(nmol/l)						

,	ina c		yU	qua	ncy				
	Lange		P-	LH (IU/I)		P-	Lean au	20.	P-
	AMH (ng/ml)		P- value	LH (IU/I)		P- value	FSH (IU/I)		P- val e
Empty follicles	NC 4.7±4.8	COH 2.3±1.7 ^a	NS	NC 15.1±4.7	COH 1.2±1.1	0.001	NC 6.6±4.1	COH 8.9±12.8	NS
Mature oocytes	7.1±7.7	2.5±1.7 ^b	0.002	15.9±9.2	2.3±5.4	0.001	6.0±2.7	6.5±10.2	NS
Immature oocytes	10.4±5.9	2.8±2.3	0.049	14.6±13.6	1.0±0.4	NS	3.7±3.1	7.6±8.2	NS
Degenerated oocytes	-	1.2±0.5 ^{ab}	-	-	1.6±0.4	-	-	5.2±0.3	-
Unfertilized oocytes	11.9±10.7	1.7±1.2	0.001	15.6±2.6	2.8±5.1	0.022	4.53±1. 1	7.6±5.2	NS
< 10 cells	3.3±1.6	2.7±1.6	NS	15.0±8.4	2.2±4.5	0.001	7.9±3.3	4.5±4.0	0.0 4
Morula	2.8±2.3	3.0±2.1	NS	14.6±15.2	4.4±10.6	NS	4.8±2.6	10.7±16. 4	NS
Blastocyst	5.6±5.2	2.1±1.1	0.008	15.9±9.9	1.5±3.2	0.001	6.1±2.7	5.1±3.2	NS

Conclusions

- Hormonal status (AMH,LH, E2,P,AND) is completely different in NC vs COH.
- No effect on oocytes and embryos quality in both groups

Conclusions problem- endometrium as target organ what kind of influence very low E2 has on the endometrium?(lead to insufficient endometrium proliferation and afterwards to defective secretory differentiation and maturation) we don't know what is the influence of spontaneous LH surge after HCG on endometrium (LH concentrations were statistically lower in pregnant than in non pregnant women, although the quality of embryos was about the same in both groups). Implantation window?

Conclusion

As to the correlation between serum and follicular AMH and LH in the NC and COH, it would be useful to follow the dynamics of periovulatory serum AMH and LH concentrations in the NC, which might provide a close to optimal time for HCG administration and oocyte retrieval.
 To modify the protocol by administration the GnRH antagonists to prevent the LH surge in NC.