

2 PN and embryo cryopreservation is a well established procedure since many years.

Oocyte cryopreservation is a more recent procedure (still experimental ?)

Freezing and thawing can produce cellular demage at any stage of development

Oocyte cryopreservation is an alternative to zygote and embryo freezing

- > When a sperm sample is not available
- In those countries where the cryostorage of embryos is forbidden by law
- Ethical concerns
- When women has to undergo chemo/radio-therapy treatments

Embryo cryopreservation is forbidden in :

- Bangladesh
- El Salvador
- Germany
- Switzerland
- Italy

2 PN is not an embryo in Germany and Switzerland and can be cryopreserved

.... while is considered an embryo in Italy

Oocyte is the only stage available for cryopreservation

Since the legislation on ART passed in Italy in March 2004 limiting to 3 the maximum number of eggs to be inseminated and banning embryo freezing, cryopreservation of spare oocytes entered the clinical practice.

After 5 years : oocyte cryopreservation can work !

Efficacy - Efficiency - Safety ?

Italian Register Oocytes cryopreservation					
Year	2004	2005	2006	2007	Tot.
Frozen oocytes	14.234	25.489	28.784	27.513	96.020
Thawed cycle	783	2.711	2.977	2.994	9.465
Thawed oocytes	3.600	12.689	15.338	14.890	46.517
Survival rate	40%	45%	49%	50%	47.5%
Trasferred cycles	640	2.261	2.366	2.428	7.695
Pregnancies	41	257	298	327	923
PR/ET	6.5%	11.4%	12.6%	13.5%	12%

Oocyte cryopreservation S.I.S.Me.R. experience

	Before the Law	After the Law
Indications	No semen available Patient's ethical concern for embryo freezing Some cases in ED programme	- All cycles with > 3 eggs - Elective cryo for OHSS risk
Cycles	93	657

Oocyte cryopreservation before the Law (1997-2003)

VITRIFICATION

Human Reproduction, Vol. 14, No. 12, 3077-3079, December 1999

Birth following vitrification of a small number of human oocytes: Case Report

Lilia Kuleshova'ı, Luca Gianaroli², Cristina Magli², Anna Ferraretti² and Alan Trounson^{1,3} ¹ centre for Early Human Development, Monash Institute of Reproduction and development, Monash University, Wight Street, Caytony, Victoria, Australia and ² SIMER sri, Bologan, Italy

Oocyte cryopreservation S.I.S.Me.R. experience

	After the Law	
Indications	 All cycles with > 3 eggs Elective cryo for OHSS risk 	

MATERIAL AND METHODS

Slow freezing protocol

- 2 step procedure:
- 1.5 M PrOH
- 1.5 M PrOH in 0.3 M sucrose

Thawing

- Solutions with a decreasing concentration of cryoprotectant:
- 1M PrOH + 0.3M sucrose
- 0.5M PrOH + 0.3M sucrose
- 0.3M sucrose

Cumulative Results 2004-2008

Indication 1 : surplus oocytes

N.of thawing cycles	657	
N.of thawed oocytes	3273	
N.of survived oocytes	2281 (70%)	
Fertilization rate(%)	74%	
N.of transferred cycles	549(82%)	
N. of pregnancies(PR/ET)	85 (15.5%)	
Implantation rate	10%	
N. of abortions (%)	23 (27,%)	
		S.I. VIS

Indication 2 : Elective oocytes cryopreservation for OHSS risk (248 cycles)

Slow- cooling oocyte cryopreservation

At present, oocyte cryopreservation is beneficial only in optimal conditions: young patients, high quality oocytes surviving the procedure.

To reach significantly better results, three embryos need to be transferred, exposing the patients to the risk of multiple pregnancies.

Cryopreservation affects viability of biopsied ocytes

New techniques, as vitrification , are under evaluation to increase oocyte freezing efficiency

Factors influencing the success of cryopreservation

- 1. Possible temperature shocks (+ 15°C or -5°C)
- 2. Possible changes in the plasma membrane
- 3. Selection of the right cryoprotectant
- 4. Dehydration: intensity and time
- 5. Critical cell volume
- 6. Solute concentration
- 7. Cooling rate
- 8. Thawing rate

The most important principle of the cryopreservation of the oocytes and embryos is:

The formation of ice crystals which should be avoided during the process of freezing of the cells and tissues The physical definition of vitrification is the solidification of a solution (water is rapidly cooled and formed into a glassy, vitrified state from the liquid phase) at low temperature, not by ice crystallization but by extreme elevation in viscosity during cooling.

Fahy 1984

Terminology

Instead of Freezing \rightarrow Vitrification

Instead of Thawing \rightarrow Warming

Historical review

- It was described at the end of the 18th Century

(Tammann, 1898) - Vitrification of mouse embryos at -196°C (Rall & Fahy, 1985; Ali and Shelton, 1993)

- Blastocyst development from bovine oocytes (Martino et al. 1996)

 Blastocyst development, Pregnancies, Deliveries from human vitrified oocytes, zygotes, cleaved eggs and blastocyst

Why we prefer the vitrification procedure now ?

- There is no mechanical injury (extracellular crystal formation)
- Less osmotic stress for the cell
- No intracellular crystal formation
- Less labor in the laboratory daily work
- Simple protocol
- It is useful for cells like oocytes and blastocyst which have less success with slow freezing
- No need for expensive device

Is the technique of vitrification standarized to be adopted in IVF centers?

All the developmental stages are now vitrified successfully These are some technical difficulties......

- a- Type and concentration of the cryoprotectant
- b- Variability in the volume of the media or the carrier
- c- Temperature of the solution during equilibration
- d- Type of vitrification container
- e- Skillness of the embryologist

S.I.S.Me.R EXPERIMENTAL Study

Slow-freezing protoc

100 oocytes from 31 patients

➢ 66 intact oocytes

> 34 biopsied oocytes

100 oocytes donated for research by 43 patients

67 intact oocytes 33 biopsied oocytes

VITRIFICATION (Kuwayama Cryotop method)

Cryoprotectants:

- 7.5% DMSO and Ethylene Glycol (EG)

Solutions with different concentrations of sucrose (1M, 0.5M and 0.25M).

Thawing Solution (TS): 1 M Sucrose

1 min 10 % HSA

Dilution Solution 1 (DS1): 0.5 M Sucrose 10 % HSA 3 min

Dilution Solution 2 (DS2): 0.25 M Sucrose 10 % HSA 3 min

S.I.S.

RESULTS 1 77/100 95/100 Survival (77%)* (95%)^a S.I.S.ME.R. VISION 2000

RESULTS 2				
	Intact Occytes		Biopsied	Oocytes
	PrOH Oocytes	Vitrified Oocytes	PrOH Oocytes	Vitrified Oocytes
Survival	53/66 (80,3%)⁵	63/67 (94%) ^ь	24/34 (70,6%)°	32/33 (96,9%)°
	b) IP=0.08		e) P=0.028	S.I.S.ME.R. VISION 2000

	Slow freezing	Vitrification
Cycles (female age)	42 (34.5±4)	21 (36.4 ± 3.9)
Thawed eggs	181	96
Survival rate	65%	66%
Fertilization rate	82%	81%
Cleavage rate	83%	82%
Cycles transferred	35	14
Clin.pregnancies	7	6
PR/ET	20%	43%
	9.3	
Abortions	2 (28.6%)	1 (16.7%)

The patient friendly approach to ART

ESHRE Campus 2009 Maribor 27-28 February

Potential "optimal" patients

- No previous ART cycles
- Normovulatory patient
- Age ≤ 40 years
- BMI < 25

	Conventional	Lite
1 st cycle	99	35
Fresh ongoing pregnancy	27 (27%)	10 (28%)
Thawed ongoing pregnancies	4	
2 nd or 3 rd cycle	10	18
Fresh ongoing pregnancies	3 (30%)	8 (45%)
Thawed ongoing pregnancies	1	
Cumulative OPR/ patient in one years	35% (35/99)	51% (18/35)
		S.I.S.ME.R. VISION 2000

