Arusha Expert Meeting 2007 37 participants Speakers: 22 countries /// 5 continents Clinicians, embryologists, researchers Ethics, sociology, health economics Politician President of the African Patient network Representative from the industry 2 journalists (ESHRE, Nature) ### Suggested raodmap - 1. To establish Working Groups (with responsible coordinator) - 2. To start feasability studies (working groups) - 3. If phase 2 is succesful: start centres with affordable ART treatment - Development fully equipped fertility centres (centres of excellence) - 5. Development of more centres (supervision: centres of excellence) ## 4 Working Groups (WG) The one-day diagnostic phase R Campo - Ovarian stimulation for IUI & IVF/ICSI N Andersen - Laboratory phase for IUI & IVF/ICSI J Van Blerkom - Fundraising H Sallam ## Study Groups (SG) Reproductive health education, prevention & awareness G Serour Burden of disease & cost-effectiveness D Habbema Training courses I Cooke Intravaginal // intrauterine culturing R Frydman Differences in ethics / law / religion / level of care F van Balen | Hanner Reproduction Vol.23, No.6 pp. 2015–2019, 2007
Advance Secure perforation on Sans (1, 2007 | do N 181 hong Soil | |---|--| | NEW DEBATE | | | Coming soon to your clinic: patient | -friendly ART | | Guido Pennings ^{1,3} and Willem Ombelet ² | | | ¹ Bioethics Inchines Ellines, Ellines Christottis, Blandpoleny 7, WHO Geor, Bulgis
Department of Observats and Contemptings, Greek, Bulgist | ner, Morel Brettian for Eurolity Enumeral | | Verrepositors whitee: Svi. Fac: 0012 16 629 557, It migh print personnel | Pagescie | | The current practice is incidently assisted reproduction is still un-
rotes. This has a number of considerables, and more importantly, a
on important amos away frees this model to incident barbey and way
agree one big step further. It is composed of a mix of fluor criteria:
the conders and child and minimal barbes for partition. All four out-
tourist control of the control of the control of the control of the
new step and control of the control of the control of the
based on jostice, noisedur is in incushed on the fundamental some
based on the automosp principle. The inclusion of the four crite-
tion of the control of the four crite-
tion of the control of the control of the four crite-
stagers these cathes in Chilcial practice. | oidulde drewbacki, Single sustryo topolar se
fare of mother and shild, Patima-Frimoth All
soot-diffuctions, equity of across, minimal ris
spaceutt here a strong normative ethical basis
so to maximise seel-being; equity of across
mathematic rate and minimal bordes is largel | ## ART in developing countries - Cost effectiveness - Access High costs ⇒ concerns about equity Private versus public - Risk minimisation - Burden minimisation ## Income /// health care costs in DC | country | Daily
income
% < 1 \$ | Daily
income
% < 2 \$ | Health care
% of GNP | Health care
% out of
pocket | |-----------|-----------------------------|-----------------------------|-------------------------|-----------------------------------| | Tanzania | 90 % | 58 % | 4 % | 83 % | | India | 80 % | 35 % | 5 % | 94 % | | Indonesia | 52 % | 8 % | 3 % | 75 % | | China | 47 % | 16 % | 5 % | 86 % | | Brazil | 21 % | 8 % | 9 % | 64 % | ## ART in DC: Cost – effectiveness ■ IVF = effective but expensive Low-cost IVF possible ? How cheap is cheap enough ? Competition with preventable mortality at low cost Malaria, HIV, diarrheal diseases etc ■ Other options: ↓ burden of disease, AID, orphans ... ART in developing countries Cost – effectiveness Access $High\ costs \Rightarrow concerns\ about\ equity$ Private versus public Risk minimisation Burden minimisation ## ## Prevention of OHSS / thrombo-embolic complications (TEC) Mild stimulation protocols (no long agonist schemes!) Low starting dose FSH or clomiphene-citrate Lower estradiol levels / lower follicle numbers -> less risk for OHSS and TEC Natural cycle IVF Complication rate (MPR & OHSS) : almost zero Couples: less time consuming Couples: less physically and emotionally demanding Much cheaper Low risk, low cost, but ... less effective Natural cycle IVF systematic review – 1800 cycles ■ ET per cycle: 45.5 % Ongoing pregnancy rate per cycle: 7.2 % Ongoing pregnancy rate per transfer: 15.8 % Reason: premature LH rise / ovulation → need for randomized controlled trials Pelinck et al., HR Update, 8, 129, 2002 | MacDougall et al. (1994) | Patients 38 years with >1 year
of infertility, spontaneous
ovulatory regular cycles and
normal semen analysis | CC 100 mg, from Days 2-6, hCG
when the leading follicle was 17
mm (n = 16) | Natural cycle IVF with hCG
when the leading follicle was 17
mm (n = 14) | Cancellation rate 0 versus 71%
Ongoing pregnancy rate 13
versus 0% (NS) | |---------------------------------------|---|---|--|---| | Dhont et al. (1995) | Patients with no previous IVF
attempts. Treatment included
IVF-ET, ZIFT and GIFT | OAC pretreatment, CC 100 mg
for 5 Days and (150)
subsequent HMG (n = 151) | OAC pretreatment, long acting
GnRH agonist and (300 IU)
HMG (n = 152) | Cancellation rate 20.5 versus 2.6%. Ongoing pregnancy rate 24.5 versus 36.8% (P = 0.02) | | Ingersiev et al. (2001) | Couples with no previous IVF
attempts under 35 years with
ICSI indication, tubal factor or
idiopathic infertility | CC 100 mg, from Days 3–7 and
hCG when the leading folicie
was 20 mm (68 patients, 111
cycles) | Natural cycle IVF with hCG
when the leading follicle was 17
mm (64 patients, 114 cycles) | Cycles resulting in embryo
transfer 53.2 versus 25.4%.
Ongoing pregnancy rate (per
cycle) 18.0versus 3.5% (<i>P</i> <
0.001) | | edler <i>et al.</i> (2001) (abstract) | Random selected normal cycling women | 100 mg CC CD 5–9, from Day 9
additional 150 IU HMG or FSH.
GnRH antagonist from Day 10
(n = 295) | 100 mg CC CD 5-9, from Day 9
additional 150 IU HMG or FSH
(n = 291) | Ongoing pregnancy rate 23
versus 21% (NS) | | Weigert <i>et al.</i> (2002) | Women with no previous IVF
cycles, between 20 and 39
years, with normal ovulatory
cycles with tubal, male factor or
unexplained infertility | OAC pretreatment. CC 100 mg
for 5 days in combination with
225 IU of rFSH and 75 IU of rLH
on alternate days (n = 154) | 150 IU rFSH (n = 140) | Ongoing pregnancy rate 35
versus 29% (NS) | | Engel <i>et al.</i> (2003) | Healthy female partners of infertile couples, between 18 and 39 years, with regular cycle length. No more than three previous IVF cycles or basal FSH > 10 IU/l | 3-7, CD 6 start 150 IU rFSH (n
= 5) | Single dose GnRH antagonist protocol. CC 100 mg CD 2-6 of 3-7, CD 6 start 150 IU HMG (ρ = 5) | Live birth rate 40 versus 20%
(NS) | | Lin <i>et al.</i> (2006) | Couples with male-factor
infertility who were about to
undergo their first ICSI cycle | CC/HMG. Cetrorelix protocol (n = 60) | buserelin long protocol ($n = 60$) | Pregnancy rate 41.7 versus
40% (NS) | # CC-IVF versus NC-IVF Randomized study: CC 100-HCG (n=16) versus NC-HCG (n=14) Selected group: women < 38 years, unexplained CC NC Cancellation rate 0 %* 71 %* OPR / cycle 13 %* 0 %* MacDougall et al., 1994, Fertil Steril, 61, 1052 ## CC-HMG-IVF versus long agonist-IVF Randomized study: OAC pre-treatment both groups CC 100-HMG (n=151) versus long protocol (n=152) Selected group: no previous IVF CC HMG agonist Cancellation rate 20.5 %* 2.6 %* OPR / cycle 24.5 %* 36.8 %* Dhont et al., 1995, HR, 10, 791 | NC-IV | F versus C | C-TVF | | | |------------------------------|---------------------------------|------------|---------------|----------------------| | NC-I | red study:
CSI (n=64) versus | | | | | Selected | group: women < 35 | years, tub | al factor or | unexpiained | | | | CC-ICSI | NC-ICSI | | | | Oocyte retrieval | 81 %* | 57 %* | | | | Transfer / cycle | 53 %* | 25 %* | | | | CPR / started
cycle | 18 %* | 4 %* | * p < 0.05 | | | CPR / transfer | 34 %* | 14 %* | | | | Implantation rate | 26 % | 14 % | | | | Twins | 10 % | 0 % | | | | | Ingerslev | et al., Hum R | eprod, 16, 696, 2001 | ### NC-IVF versus CC-IVF Non-randomized study: long protocol-ICSI (n=116) versus CC-ICSI (n=132) Selected group: women < 35 years, tubal factor or unexplained LP-ICSI Oocyte retrieval 86.3 %* Transfer / cycle 55.1 %* CPR / started cycle 24.2 % 16.3 % *p < 0.05 21.1 % 22.8 % Implantation rate Twins Ingerslev et al., unpublished ## Minimal monitoring E2 monitoring required only for those at risk of OHSS E2 levels did not correlate with IVF outcome Thomas K et al Acta Obst Gyn Scand 2002 A single USS on day 8 or 9 reduces cost without compromising success rates Hurst BS et al Fertil Steril 2002 The addition of E2 /Follicle criteria to USS in normal responders seldom changes hCG timing, does not increase pregnancy rates or risk of OHSS Lass A et al Fertil Steril 2003