

ESHRE Campus, Maribor,27-28 February 2009

Preovulatory follicle size and ultrasound monitoring in natural cycle

Veljko Vlaisavljević

University Clinical Centre Maribor
Gynecology and Perinatology
Department for Reproductive Medicine and Gynecologic Endocrinology

ivf.mb@uni-mb.si www.ivf-mb.net

Ultrasound and follicle monitoring & ART

Visualization of follicle	Kratochwil	1972
Echographic monitoring of follicle growth	Hackelöer	1977
Transabdominal follicle puncture	Leitz	1981
Ultrasonographically guided puncture with vaginal probe	Dellenbach	1984
Ultrasonographically guided puncture by transurethral approach	Persons	1985
Transvaginal puncture using vaginal probe	Wikland	1985

Evaluation of preovulatory follicle by ultrasound

- Follicle diameter
- Follicle growth pattern
- Follicular wall thickness
- Perifollicular vascularity
- · Perifollicular blood flow

Follicular size & visualization by ultrasound

Stage	Follicular size (mm)
Primordial	0.03-0.04
Primary	0.05-0.06
Secondary	0.07-0.11
Preantral	0.12-0.20
Early antral	0.21-0.40
Antral	0.41-16.00
Preovulatory	16.1-20.00

Gougeon A.Human Reprod 1986;1:81-7.

Ultrasound and ovarian reserve assessment

Scheffer GJ et al. Fertil Steril 1999;72:845-51.

Dominant preovulatory follicle

• Diameter at the time of LH surge

18.1 - 22.6 mm

- Linear growth rate before LH peak:
 - 1.4 2.2 mm /day
- After the peak, growth increases very quickely

Pashe et a., Fertil Steril 1990:54:638-42.

Follicle diameter and time remaining to ovulation (d=days,h=hours)

			Percentiles		
Mean diameter (mm)	10	25	50	75	90
14	1d+6h	1d+2h	2d+18h	5d+6h	7d+0h
15	1d	1d+12h	2d+18h	4d+18h	6d+6h
16	1d	1d+12h	2d+12h	4d	5d+12h
17	1d	1d+6h	2d+12h	3d+18h	5d
18	1d	1d+6h	2d	3d+6h	4d+12h
19	1d	1d+6h	2d	3d	4d
20	18h	1d	1d+18h	2d+18h	3d+18h
21	18h	1d	1d+12h	2d+12h	3d+6h
22	18h	1d	1d+12h	2d+6h	3d+6h
23	12h	18h	1d+6h	2d+6h	2d+18h
24	12h	18h	1d+6h	2d	2d+18h
25	12h	18h	1d+6h	2d	2d+18h

When is the correct moment to induce final oocyte maturation ?

When the dominant follicle allained 16-20 mm.

Estradiol levels were indicating satisfactory follicular development (>1.1 - 0.73 nmol/L).

Follicular diameter	Estradiol level
16 mm	1.1 nmol/L
18 mm	0.91 nmol/L
20 mm	0.73 nmol/L

When is the correct moment to induce final oocyte maturation ?

(Maribor IVF)

When the dominant follicle allained >15 mm.

and

Estradiol levels were indicating satisfactory follicular development > 0.49 nmol/L

Serum estradiol and follicular diameter on the day od $\mbox{$hCG$ administration in natural } \mbox{ cycle}$

Estradiol (mean)	Follicle	e diameter	Method	Author
nmol /L		mm		
1.17	19.6	(mean)	Fluoriomunometric	Cahill,1998
1.09	18.6	(max)	RIA Pantex	Lindheim 1997
1.05	19.3	(max)	RIA Pantex	Paulson 1994
0.78	19.5	(mean)	DPC RIA	Foulot 1989
0.59	18.9	(mean)	Pharmacia Delphia	Tomaževič 1999
0.76	15.6	(mean)	Abbott,AxSYM	Maribor 2000
	17.0	(max)		

Perifollicular angiogenesis - Follicular growth is followed by an increase in perifollicular capillary network; - Perifollicular blood flow may be associated with events essential for oocyte quality.

Vascularization studies in natural cycles

The value of different Doppler modalities in recognizing "pregnancy quality " follicles in unstimulated cycles by assessing perifollicular blood flow.

- Conventional color Doppler (PI ,RI ,PSV)
- 2. Power Doppler
- Semiquantitative analysis
- 3D quantitative analysis

Doppler studies of perifollicular blood flow in unstimulated cycles

 $\ensuremath{\mathsf{PSV}}, \ensuremath{\mathsf{PI}}$ and $\ensuremath{\mathsf{RI}}$ in the perifollicular vessels change during the menstrual cycle.

Collins et al. Hum Reprod 1991; Kurjak et al. Fertil Steril 1991; Campbell et al. Fertil Steril 1993; Tan et al. Am J Obstet Gynecol 1996; Lunenfeld et al. Hum Reprod 1996; Zaidi et al. Ultrasound in Obstet Gynecol 1996; Agrawal et al. Clinical Endocrinology 1999.

Problems in blood flow assessment in stimulated cycles

Difficulties in following the same follicle; identifying perifollicular vessels; tracing the embryo to the follicle.

Quantitative pulsed Doppler indices of perifollicular blood flow and IVF outcome in stimulated cycled

PSV of individual follicles correlated with:

- oocyte recovery rate (Nargund et al., 1996a,b);
- fertilization rate (Nargund et al., 1996a);
- developmental potential of the oocyte (Van Blerkom et al., 1997);
- quality of preimplantation embryo (Nargund et al., 1996a).

Power Doppler assessment of perifollicular vascularity in 141 unstimulated cycles

Semiquantitative analysis

- 1 Scarce dotted vascularity;
- 2 short linear segments of flow;
- 3 flow in less than 30% of follicular wall;
- 4 flow in 30-50% of follicular wall;
- 5 flow in more than 50% of follicular wall.

Distribution of perifollicular vascularity types in 141 natural IVF cycles with and without fertilization and conception

Gavric Lovrec V. et al. WMW 2003

Dinamic PI and RI in conceptied and nonconcepted 210 natural IVF cycle

Measurements performed on day 0 (hCG administration) and $\,$ day +1 and day +2 $\,$

Gavric Lovrec, V.: WKW 2003

Vascular network surrounding dominant follicles in pregnant and not pregnant IVF/ICSI natural cycles on day of oocyte pick up

Vlaisavljevic et al, Ultrasound Obstet Gynecol 2003;22:520-6

	Vascular network in 5mm capsule (%)	Pulsatility index	Resistence index	Peak systolic velocity (cm/s)	Vessel 1	Vessel 2	Vessel 3
Pregnant	19.2 ± 16.8*	0.84±0.2	0.55 ±0.1	8.4 ±3.2	20.6 ±10.1	14.8 ± 7.1	10.0 ± 3.8
Not pregnant	10.5 ±7.1	0.82±0.2	0.51 ±0.1	12.8±7.4	39.7 ± 19.1	14.0 ± 5.6	9.4 ± 3.5

*boderline statistical significance (F=2.457, p=0.074)

P. Dennes and A. Martin Street, and Street, 22 (Constitution), the second and a second assessment of the Street, and the Stree

Measurement of perifollicular blood flow of the dominant preovulatory follicle using three-dimensional power Doppler

V. VEADANT DANCA, M. REERCA, V. GANKE LOWRECA, D. ZAZULAL and N. MREENT).

Conclusion: It can be hypotesized that the follicles containing oocytes able to produce a pregnancy have a distinctive and more uniform perifollicular vascular network.

Capillary network in CL

- Oxigen, nutrients and hormone precursors to steroidigenic cells
- 2. Release of progesterone
- 3. Damage after OPU

Mature corpus luteum (CL): highest blood flow in any tissue in human body

1	•

Distribution of blood volume in 6 largest blood vessels in the perifollicular network preamd 35 hours after hCG administration in 21 dominant follicles

Vlaisavljevic et al., in press

	Vascular network in 5mm capsule (%)	Vessel 1	Vessel 2	Vessel 3	Vessel 4	Vessel 5	Vessel 6
Pre hCG	3.5 ± 3.6	50.5±28.1	14.0 ±7.6	8.0 ± 4.8	5.1 ± 3.1	3.2 ± 2.5	2.2 ± 2.1
Post hCG	7.8 ±10.1	29.1 14.1	17.2 ±8.5	10.5 ±5.1	6.4 ± 2.1	5.0 ± 1.8	3.5 ± 1.7

/'Ana	lusions	

- Follicle diameter and growth dynamics are important factors for the prediction of LH surge (and/or hCG administration) in natural cycle
- The critical follicle diameter for LH surge also depends on the lengh of menstrual cycle
- Estradiol level has important role in accurate timing of hCG administration in natural cycle

Conclusions II

- Quantitative pulsed Doppler indices are not useful in recognising pregnancy quality follicles in natural cycle;
- Power Doppler assessment of perifollicular blood flow has a limited value in prediciting follicle quality;
- Follicles, associated with conception, have a high percentage of volume showing power Doppler flow signal, their vascularization is more uniform.

12