

de Salud Carlos III

New hESC derivation strategies maintaining embryo viability

Carlos Simón

Spanish Stem Cell Bank-Valencia Node

Human Blastocyst

Human foreskin fibroblasts (FSK)

Inner Cell Mass attached on FSK

hESC primary colony

hESC indifferentiated colony

iE

VNIVERSITÄRI VI

Alternative Sources of Human Pluripotent Stem Cells

A WHITE PAPER

The President's Council on Bioethics

http://bioethics.gov/reports/white_paper

Alternative sources of human Pluripotent Stem Cells

Biological artifacts

Embryofree strategies

Somatic Cell Reprograming

Alternative sources of human Pluripotent Stem Cells

Organismically died embryos

Blastomere Biopsy

Embryonic and extraembryonic stem cell lines derived from single mouse blastomere

Chung Y et al. Nature 2006; 439: 216

Human Embryonic Stem Cells derived from Single Blastomeres

Klimanskaya I et al. Nature 2006; 444:481

Human Embryonic Stem Cells derived from Single Blastomeres

Blastomere-derived outgrowth close to a colony of GFP-positive hESCs

Morphology of blastomerederived hESC colonies

Klimanskaya I et al. Nature 2006; 444:481

Efficient establishment of mouse embryonic stem

MEFs HES medium (KoSR+ACTH)

Wakayama S et al. STEM CELLS 2007;25:986

Efficient establishment of mouse embryonic stem

Origin of cells	Genotype of embryo	Stage of blastomere	No. of blastomeres used	Established ES cell lines	
				No.	%
Blastomere	F2	Two-cell	23	16	≫ 69ª
		Early four-cell	110	45	→40 ^b
		Late four-cell	60	13	>22 ^c
		Eight-cell	85	12	> 14 ^c
	GFP	Two-cell	20	10	► 50
		Early four-cell	7	2	> 28
		Eight-cell	30	5	> 16
Control	F2	Blastocyst	16	14	88

Table 1. Effect of the developmental stage of the embryo on embryonic stem cell establishment from blastomeres

Wakayama S et al. STEM CELLS 2007;25:986

ະເພີ່ອ Benerated without embryo destruction

UNIVERSITARI

VNIVERSITATÕEVALUNCIN

Derivation of human embryonic stem cell lines from biopsied blastomere on human feeders with a minimal exposure to xenomaterials

Dusko I et al. Stem Cell Dev 2009; 18: 1343

Derivation of human embryonic stem cell lines from Solution of human embryonic stem cell lines from biopsied blastomere on human feeders with a minimal exposure to xenomaterials

w	14	W14-1	Q	30 N14-2	
biopsy		wo	two		
culture	co-culture	alone	co-culture	alone	
day 0	divided	divided	not divided	not divided	
HFF	PD6	PD6	PD6	PD6	
day 3	attached	attached	not attached	not attached	
day 5	initial outgrowt	h initial outgrowth	n/a	n/a	
hESC	no	W14-1A	n/a	n/a	

▲

	BLASTOMERES	DIVIDED	ATTACHED	OUTGROWTH	LINES
PD6 HFF	4	2 (50%)	2 (100%)	2 (100%)	1 (50%)

Dusko I et al. Stem Cell Dev 2009; 18: 1343

Derivation of human embryonic stem cell line from single biopsied blastomere at Valencia Stem Cell Bank

Project 3: Derivation of hESCs maintaining embryo viability

Approved by: Commission of Follow-up and Control of the Donation of Cells and Human Tissues of the Institute of Health Carlos III

> December 13th, 2006, Permission to use 180 embryos

VAL-10B

Derivation of human embryonic stem cell line from Single biopsied blastomere at Valencia Stem Cell Bank. VAL-10B

EMBRYO MORPHOLOGY	SINGLE BIOPSIED BLASTOMERE	D BLA	IVIDED STOMERE	ATTACHED	OUTGROWTH	CELL LINE
G II	8	6	(75%)	8 (100%)	6 (75%)	1 (17%)
G III	13	7	(54%)	13 (100%)	1 (8%)	0
G IV	7	2	(29%)	4 (57%)	1 (14%)	0
TOTAL	28	15	5 (54%)	25 (89%)	8 (32%)	1 (6%)

VAL-11B

VAL-11B

	SINGLE		DIVIDED	FACTOR				
# EMBRYO	BIOPSIED BLASTOMERE	CULTURE	BLASTOMERE	Laminin Fibronecti n	Laminin	ATTACHED	OUTGROWTH	LINE
3 3	3 3	A(*) A	1 3 66,7%	•	\$	0 0	n/a n/a	
3 3	3 3	A-B A-B	1 0 16.7%	•	\$	3 0	3 n/a	0
3 3	3 3	B (*) B	0 1 16,7%	•	¢	1 2 (66,7%)	1 1(50%)	0 1 (50%)

A: Cleavage Embryo

Medium

B: Blastocyst Medium

Registered Cell Lines at Spanish Stem Cell Bank (http://www.isciii.es/htdocs/terapia/terapia_lineas.jsp)

Cell Line		E	Embryo	Color Morpho	iy logy	Last passage Criovials
VAL-3		Whole noi (46,XY) d	rmal blastocyst stage embryo lerivation in human foreskin		10X, P42	80 29 CV
VAL-4	0	Whole noi (46,XX) d	rmal blastocyst stage embryo lerivation in human foreskin		10X, P40	54 38 CV
VAL-5		Whole noi (46,XX) d	rmal blastocyst stage embryo lerivation in human foreskin		10X, P43	49 37 CV
VAL-6M		Whole m de (46)	onogenetic affected embryo erivation (DM Type1) ,XY) in human foreskin		10X, P45	49 29 CV
VAL-7		Derivatio (46	n from ICM isolated by laser ,XY) in human foreskin	1 sh	10X, P22	65 18 CV
VAL-8		Whole noi (46,XX) d	rmal blastocyst stage embryo lerivation in human foreskin		10X, P6	22 30 CV
VAL-9		Whole n (46,XY) d	ormal morula stage embryo erivation in human foreskin		10X, P6	55 43 CV
VAL-10B		-	Derivation from single biopsied blastomere (46,XY) in human foreskin		10x, P13	25 39 CV
VAL-11B		8	Derivation from single biopsied blastomere (46,XX) in human foreskin		10x, P15	25 46 CV

UNIVERSITARI VNIVERSITATÕEMALENCIA

Characterization

1. Morphology

Characterization

3. Imprinting

VAL-3

VAL-4

VAL-5

VAL-6M

220

260

300

180

140

100

6000-4000-2000-

VAL-9

241 201 140-

VAL-11b

Characterization

VAL-5 (46,XX)

57)]]{	ļŗ
<u>}</u>	Ķ	1))	10	7(12
13	14	15	-	16	72	12
<u>]e</u> 19	11 20	_	21	() 22	<u></u>	

VAL-8 (46,XX)

Convoit Convoit	2	(incard)	C	3	6	
2	ated a	2	8			¢.8
	ŝ.	8	8	3	8	8.8
88	a 8	₹,6	\$ C	1	8	v

VAL-11B (46,XX)

5. Telomerase activity

VAL-10B

ic Characterization 7. Immunohistochemistry

VNIVERSITATÕEVALENCIA

8. In vitro differentiation

9. In vivo differentiation

Functional analysis

KEGG ANALYSIS

Glycerolipid metabolism

Bisphenol A degradation

Propanoate metabolism

Glycolysis / Gluconeogenesis

hsa00624 Ribosome

Glycosphingolipid biosynthesis - neo-lactoseries

2 vs 1

ICM vs Blastomere origin

Over/Under term representation in KEGG

😿 Differences between Stem Cell Types 🔬

	Blastomere -derived hESC	Whole embryo- derived hESC	Partenoge nic hESC	iPSC	Adult SC	Cord blood SC
UNLIMITED PROLIFERATION	yes	yes	yes	yes	no	no
NATURAL GENE REGULATION (IMPRINTING)	yes	yes	no	n/d	yes	yes
PLURIPOTENCY	yes	yes	yes	yes	no	no
UNMODIFIED	yes	yes	yes	no	yes	yes
PRESERVE EMBRYO	yes	no	yes	yes	yes	yes
IMMUNOCOMPA TIBLE	yes	sometime s	yes	yes	yes	yes

INSTITUT UNIVERSITARI

VNIVERSITATÕEMALENCIA

Ideal for use in:

- cell therapy
- embryo toxicity screening
- drug discovery

Derivation of hESC lines mantaining embryo viability

CONCLUSIONS

•Derivation from single blastomere constitute an alternative method to overcome controversies that involves the original procedure concerning the destruction of human embryos.

•Currently this strategy has been prooven efficient in rodents and humans.

•We have derived two hESC from single biopsied blastomere maintaining embryo viability (N Engl J Med 2009).

•hESC derivated from single blastomere have similar phenotype and genotype as those derived from morula and blastocysts