Registries and Biobanks for Human Stem Cell Lines

Glyn Stacey, UK Stem Cell Bank, NIBSC ESHRE Course, Valencia, 8th November 2010

National Institute for Biological Standards and Control Assuring the quality of biological medicines

- Registries and 'Biobanks'
- Case study the hESCreg registry
- Biobanks and their operation
- Case study UKSCB
- iPSC banking

Registry: data source

- Lists of nationally approved embryonic stem cell lines to address public concerns (NIH, MRC, RKI, ISCIII....)
- Sources of information on each cell line (hESCreg, ISCI, UMass. etc.)

Biobank: cell source (physical store of cell lines)

- Various levels of operation
- NB care with link between published data, registry data and the actual cells

Coordination of Cells and Data?

- Crosscontamination/switching
- Biological variability differentiation, passage level, culture system/media
- Microbiological contamination

NB Documented traceability between cells and data

- Large number of cell line entries not necessarily a mark of value – scientific and ethical scrutiny are vital (quality of science and public acceptability)
- Hazards wrong data provided, data entry errors, ageing data sets, stability of electronic data files, unauthorised interference/'hacking'
- How does the registry manage these?
- Are there formal documented management processes?

hESCreg database www.hescreg.eu

hESCreg: >600 lines registered from around world (iPSC) EC reference point: acceptability for use in EC research Others: WiCell, UKSCB, ICSCN, ISSCR, UMass

- Code of Practice: aims and operational principles, structure, function, obligations and dealing with risk
- Protocols: SOPs for data acquisition, data entry, authorisation and review
- CoP and SOPs published on website
 <u>www.hescreg.eu</u>
- Review by originator, country reps (StC) and SAB
- Independent biobank data (WiCell, UKSCB)
- However, not practical to validate information ultimately reliant on provider accuracy and honesty

Biobanks: Part of the Stem Cell Community

- Scientific standardisation:
 - Focussed on core QC (contamination, identity)
 - Same stocks distributed to many labs and over time
 - Pristine and traceable early passage material retained for future
- Safety:
 - Centralised testing not always possible in individual laboratories
- Ethical issues:
 - Centralised processes in biobanks can assure ethical issues addressed
- International coordination:
 - Common standards to promote quality of science and support for research and clinical application

The Banking Process: Technical Issues

- Variable Cell Growth

- Need for Robust Quality Control/Characterisation

BioBank Case Study – UK Stem Cell Bank: - Accession of cell line - Banking/QC/Release Process - Storage and Distribution

UKSCB: How it Works

Operational principles:

- Provision of ethically sourced stem cell lines for ethically approved research and clinical trials
- High degree of transparency (CoP)
- Prohibited from discovery research and product development IP

Immediate benefits:

- Cells are banked, tested and distributed at no charge with depositor IP protected
- A neutral partner in the stem cell field coordinated with regulators (e.g. WHO, EMA) and long experience in standardisation of biological medicines.

Accession of Stem Cell Lines: Getting the cells and the right information

- Obtain intra-lab consensus: culture, preservation characterisation (may be challenging!)
- Evidence for consent and ethical approval for derivation (HFEA and Steering Committee)
- Additional requirements for clinical grade cells:
 - HTA (EUTCD) provision of starting cells,
 - MHRA/EMA clinical trials and product
 - Key elements :
 - Traceability (SOPs, reagents, environment, staff)
 - Donor selection and anonymised link to donor
 - Risk assessment

- Traceability is critical
- On- and off-site GMP storage
- Document procedures, environment/staff, testing to enable demonstrate of what the Bank did:
 - Research lines dealing with complaints and trouble shooting
 - Clinical trials Serious Adverse Reactions & SAEs
- Ensure recipient use is appropriate: UKSCB SC ethical review of use of hESCs – challenge for international supply
- Qualified shipment equipment and carriers

Quality Control and Characterisation: Are the Cells What They Should Be ?

- Correct phenotypic and function
 - Surface markers, RNA, differentiation/pluripotency?
- Correct identity
 - DNA profile

- Original tissue, cell culture contaminants
- Stability of *in vitro* cultures:
 - Passage
 - Culture conditions

5

New UKSCB Laboratories

- Exciting opportunities with large banking initiatives being launched
- Scientific challenges:
 - Same technical difficulty as hESCs
 - Reprogramming may variable need lab assay to screen "iPSC" lines for complete reprogramming and pluripotency
 - Safety issues for clinical application
- Ethical challenges:
 - Use of foetal tissue
 - Publication of genetic data: donor privacy and medical/social implications for donors
- Need to establish technical and ethical standards: good efficient science and public acceptability NB UK experience with unconsented use of tissues

- Improve access to qualified lines (reduce need to derive new hESCs, qualification of iPSC lines)
- International coordination (ISCBI, ISSCR, EWP etc.) e,g. ISCBI Guidelines for hESC procurement, banking, testing and distribution (Stem Cell Reviews and Reports, Dec. 2009)
- Supporting depositors: resolve contamination, cell identity, altered characteristics, lost cells!
- Research not the priority: Focus on the technical improvement and validation of methods
- Technical back-up and training

- · Changing science, ethics, regulation
- Commercial issues:
 - Rapid turnover of ownership,
 - MTAs under old legislation/regulation,
 - Demands for exclusive ownership of lines versus altruistic donation of embryos for broad research?
- Maintaining relevance of cells: new growth conditions and characterisation methods – rebanking!
- Clinical grade cells? (ISCBI/EWP)
- iPSC: important but care: "frying pan to fire"?