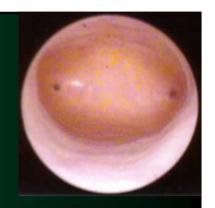
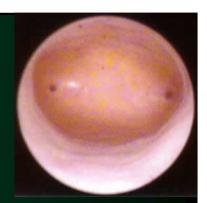
Is diagnostic hysteroscopy an effective tool to increase ART results?


Mr. Tarek El-Toukhy, MSc MD MRCOG
Consultant in Reproductive Medicine and
Surgery,

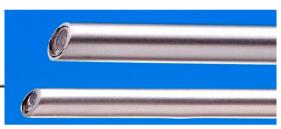
Guy's and St. Thomas' Hospital, London

Summary


- **∀**Technical feasibility and safety
- **∀Effectiveness in ART population**

- **∀Hysteroscopy before IVF**
- **TROPHY** Trial

Technical feasibility


✓ Success rate of standard hysteroscopy:

96% in pre- and post-menopausal population

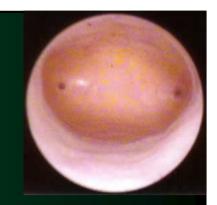
97% in pre-menopausal population (P=0.002)

DOI: 10.1111/j.1471-0528.2007.01326.x www.blackwellpublishing.com/bjog Systematic review

Office mini-hysteroscopy

R.Campo¹, Y.Van Belle, L.Rombauts, I.Brosens and S.Gordts

Technical feasibility in 530 infertility


patients

98%

Failures	No.	%
Pain	4	0.75
Internal cervical stenosis	3	0.57
Insufficient visualization	5	0.94
Complications	0	
Total	12/530	2.26

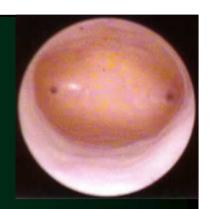
Safety

∀Standard Hysteroscopy:

1% (16/1399) complication rate (SR of 17 studies)

van Dongen et al, BJOG 2007

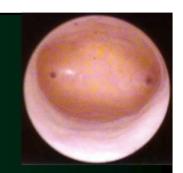
Vaso-vagal attack in 13 False track in 2 Fundal perforation in 1



Safety

∀Mini-hysteroscopy:

Table IV. Complications in 4204 conventional office hysteroscopies (1982–1989)


0.16%

Complications	No.	%
Fundal perforation	2	
Prolonged vagal reaction	4	
Epileptic insult	1	
Infections	0	
Total	7	0.16

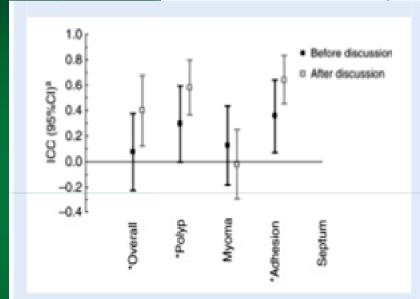
R.Campo¹, Y.Van Belle, L.Rombauts, I.Brosens and S.Gordts

Effective Tool?

Reveal pathology

∨ Normal hsyteroscopy

▼ Effectiveness is measured by restoration of reproductive potential



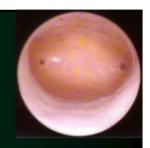
Observer agreement in the evaluation of the uterine cavity by hysteroscopy prior to *in vitro* fertilization

J.C. Kasius ^{1,*}, F.J.M. Broekmans ¹, S. Veersema ², M.J.C. Eijkemans ³,

Devroey⁵, B.C.J.M. Fauser¹, and H.M. Fatemi⁵

Figure 1 Level of interobserver agreement expressed as ICC^a before and after discussion between observers. ^aICC, intraclass correlation coefficient (equivalent of the overall weighted κ) (Fleiss and Cohen, 1973). *For diagnosing the uterine cavity to be normal or abnormal, diagnosing polyps and adhesions, the interobserver agreement significantly increased through discussion (P < 0.01). Impossible to compute ICC for diagnosing septa with ordinary statistics, as also used by SPSS version 15.1.

Table II Findings of the hysteroscopy performer at real-time hysteroscopy.


Findings	Prevalence	(%)
Normal cavity	94	87.9
Abnormal cavity	13ª	12.1
Polyp	12	11.2
Myoma	I	0.9
Adhesion	0	0.0
Septa	2	1.9
Total	1071	100

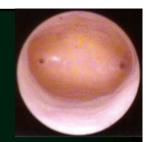
^aIn two cases more than one abnormality was detected.

✓ Prevalence in ART population 12%-45% (5000 cases)

(Campo et al, 1999; Hinckley and Milki, 2004; Karayalcin et al, 2010; Fatemi et al., 2010; Al-Mazny et al., 2010)

- **V** Commonest findings:
 - Endometrial polyps
- Submucous fibroids
- Intra-uterine adhesions Septate uterus

Outpatient hysteroscopy: a routine investigation before assisted reproductive techniques? Fertility and Sterility® Vol. 95, No. 1, January 2011

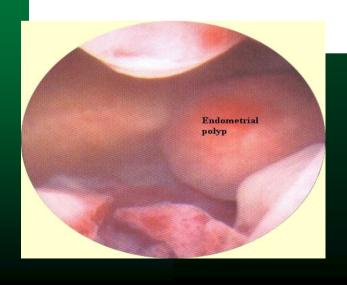

TABLE 3

Hysteroscopic findings according to age distribution and previous ART failure(s).

Hysteroscopic findings	Age < 35 y (n = 67)	Age ≥35 y (n = 78)	No previous ART (n = 94)	Previous ART (n = 51)
Cervical stenosis	2 (3.0%)	2 (2.6%)	3 (3.2%)	1 (2.0%)
Endocervicitis	3 (4.5%)	1 (1.3%)	2 (2.1%)	2 (3.9%)
Endocervical polyp	2 (3.0%)	1 (1.3%)	3 (3.2%)	0 (0.0)
Uterine cavity hypoplasia	1 (1.5%)	1 (1.3%)	2 (2.1%)	0 (0.0)
Uterine septum	1 (1.5%)	0 (0.0)	1 (1.1%)	0 (0.0)
Intrauterine adhesions	4 (6.0%)	2 (2.6%)	2 (2.1%)	4 (7.8%)
Intrauterine foreign body	0 (0.0)	1 (1.3%)	0 (0.0)	1 (2.0%)
Endometritis	2 (3.0%)	1 (1.3%)	1 (1.1%)	2 (3.9%)
Submucous myoma	1 (1.5%)	5 (6.4%)	3 (3.2%)	3 (5.9%)
Endometrial polyp	2 (3.0%)	6 (7.7%)	3 (3.2%)	5 (9.8%)
Polypoid endometrium	1 (1.5%)	3 (3.8%)	3 (3.2%)	1 (2.0%)
Endometrial hyperplasia	0 (0.0)	4 (5.1%)	1 (1.1%)	3 (5.9%)
Blocked ostia	2 (3.0%)	0 (0.0)	1 (1.1%)	1 (2.0%)
Total findings	21 (31.3%)	27 (34.6%) ^a	25 (26.6%)	23 (45.1%)

Pathology encountered

Surgical treatment

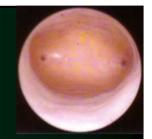


Endometrial polyps >15mm

Α	Hysteroscopic polypectomy		Diagnostic hysteroscopy		Risk ratio	
	Events	Total	Events	Total	M-H, Fixed, 95% CI	
Perez-Medina et al. 2005	64	107	29	108	-	
Test for overall effect Z=4.51	(P<0.00001)			94		
				0.1	0.2 0.5 1 2	5 1

Human Reproduction Update, Vol.16, No.1 pp. 1-11, 2010

Favours hysteroscopy

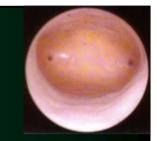

Favours no hysteroscopy

Advanced Access publication on September 10, 2009 doi:10.1093/humupd/dmp033

human reproduction update

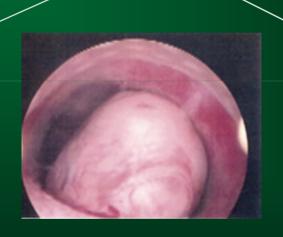
Submucous fibroids <4cm

В	Surger	Surgery		tant gement	Risk ratio		
	Events	Total	Events	Total		·d, 95% CI	
Casini et al. 2005	21	52	9	24			
Test for overall effect Z=1	1.86 (P=0.06)						
				0.01	0.1	10	100
The American Street		1		Faw	ours expectant	Favours surg	ery



Human Reproduction Update, Vol.16, No.1 pp. 1-11, 2010

Advanced Access publication on September 10, 2009 doi:10.1093/humupd/dmp033


human reproduction update

Larger submucous fibroids

204 women with unexplained infertility and submucous fibroids randomised to either

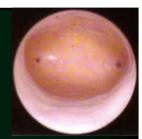
101 hysteroscopic myomectomy

103 diagnostic hysteroscopy

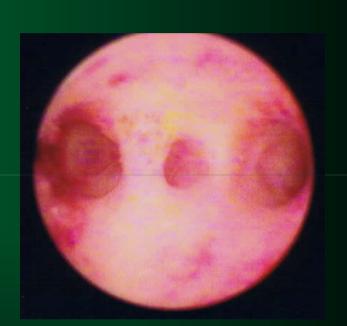
CPR 63.4%

Follow up for 1 year

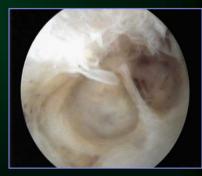
RR-2.1, 95%CI 1.5-2.9


Shokeir et al, 2010 Fertil Steril

CPR 28.2%

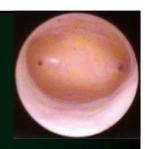


Intrauterine adhesions



No randomised trials

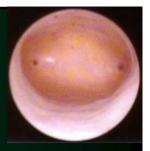
No controlled trials



∨ Case series typically with N<100

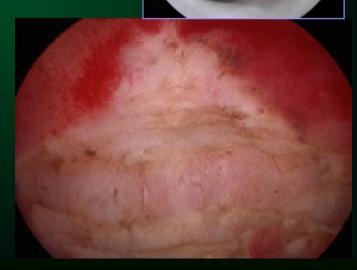
Intrauterine adhesions

- ✓ Pregnancy rate ranges between 30-50%
- ✓ Live birth rates range between 10-35%
- ✓ Poor prognostic indicators:
 - Adhesions obliterating both ostia
 - Age >35 years
 - Persistence of amenorrhea
 - Reformation of adhesions at 2nd look



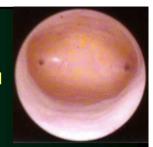
Thompson et al,2009; Pabuccu et al, 2008; Yu et al, 2008

Uterine septum resection


Mollo et al, 2009 Fertil Steril

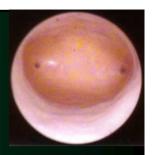
✓ Controlled study showed higher live birth rate after septal resection (n=44) compared to controls (n=132)

34% vs 19% (P<0.01)



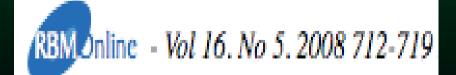
Hysteroscopy before IVF

Outpatient hysteroscopy and subsequent IVF cycle outcome: a systematic review and meta-analysis (NBM Online - Vol 16. No 5. 2008 712-719)


Table 2. Characteristics of the studies included in the systematic review.

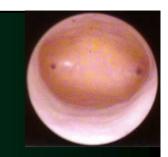
Reference	No. of participants	Intervention	No intervention	Outcome measure
Demirol and Gurgan, 2004	421	210 = office 5 mm hysteroscopy	210 = no hysteroscopy	Clinical pregnancy rate, miscarriage rate
Raju et al., 2006	520	265 = office 5 mm hysteroscopy	255 = no hysteroscopy	Clinical pregnancy rate, miscarriage rate, live birth rate
Mooney and Milki, 2003	94	48 = office 5 mm hysteroscopy	46 = remote hysteroscopy	Clinical pregnancy rate
Doldi et al., 2005	600	300 = office 5 mm hysteroscopy	300 = no hysteroscopy	Pregnancy rate ²
Chung et al., 2006	56	28 = office hysteroscopy	28 = no hysteroscopy	Pregnancy rate ² , live birth rate, cumulative pregnancy and live birth rates

^{*}The definition of pregnancy was not clear in these two studies.

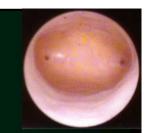


Hysteroscopy before IVF

Outpatient hysteroscopy and subsequent IVF cycle outcome: a systematic review and meta-analysis

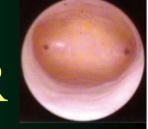

Pooling the results of five studies showed benefit from outpatient hysteroscopy in improving pregnancy rate in the subsequent IVF cycle (RR = 1.75, 95% CI 1.51–2.03)

Updated Evidence



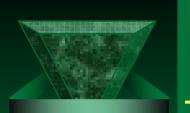
▼ Randomised Trials (2)

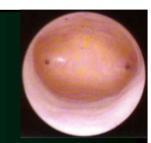
✓ Prospective observational data (4)



Updated Meta-analysis: CPR

	Hysteroscopy n/N	Control n/N	RR (fixed) 95% Cl	Weight %	RR (fixed) 95% Cl	Year
Random ised studies						
Demirol and Gurgan	67/210	45/211	-	39.88	1.50 [1.08, 2.07]	2004
Raju et al	108/255	69/265	+	60.12	1.63 [1.27, 2.09]	2006
Total (95% CI)	465	476	•	100.00	1.57 [1.29, 1.92]	
Test for heterogeneity: Chi² = Test for overall effect: Z = 4.5	0.16, df = 1 (P = 0.69), l² = 0% 50 (P < 0.00001)					
Non-random ised studie;						
Mooney and Milki Doldi et al	34/48 114/300	18/46 54/300		10.13 29.77	1.81 [1.21, 2.71] 2.11 [1.59, 2.80]	2003 2005
Cheung et al	8/28	5/28		2.76	1.60 [0.60, 4.29]	2006
Makrakis et al	145/414	104/414	-	57.34	1.39 [1.13, 1.72]	2009
Total (95% CI)	790	788	•	100.00	1.66 [1.42, 1.93]	
Test for heterogeneity: Chi ² = Test for overall effect: Z = 6	= 5.58, df = 3 (P = 0.13), l² = 46.3 .39 (P < 0.00001)	%				
	= 5.85, df = 5 (P = 0.32), l² = 14.6	1264	•	100.00	1.62 [1.44, 1.83]	Guy's and St Thomas' N
Test for overall effect: Z = 7.	.81 (P < 0.00001)					NHS Foundation Trust
		0.1	0.2 0.5 1 2 Favours control Favours hys	5 10		ACL
			rayours control - rayours riys	steroscopy		Assisted Conception U


Updated Meta-analysis: LBR


Outcome: 01 Hyster	odcopy and IVF-OPR/LBR					
Study or sub-category	Hysteroscopy n/N	Control n/N		(fixed) 5% Cl	Weight %	RR (fixed) 95% Cl
Raju et al	120/414	91/414		+	67.83	1.32 [1.04, 1.67]
Makrakis et al	72/255	44/265		+	32.17	1.70 [1.22, 2.37]
Total (95% CI) Total events: 192 (Hysteros Test for heterogeneity: Chi ² Test for overall effect: Z = 2	= 1.49, df = 1 (P = 0.22), I² = 33.0	679 1%		•	100.00	1.44 [1.19, 1.75]
			0.1 0.2 0.5	1 2	5 10	Guy's and 5t Thomas'

Favours control

Favours hysteroscopy

Normal hysteroscopy

Guy's and St Thomas' NHS

Study or sub-category	Normal hysteroscopy n/N	Control n/N	RR (fixed) 95% Cl	Weight %	RR (fixed) 95% Cl	Year
Mooney and Milki	14/21	18/46	-	4.52	1.70 [1.06, 2.73]	2003
Demirol and Gurgan	50/154	45/211	+	15.21	1.52 [1.08, 2.15]	2004
Cheung et al	6/21	5/28	-	1.72	1.60 [0.56, 4.54]	2006
Raju et al	71/160	69/265	-	20.81	1.70 [1.30, 2.23]	2006
Makrakis et al	301/935	104/414	+	57.74	1.28 [1.06, 1.55]	2009
Total (95% CI) Total events: 442 (Normal h	1291 iysteroscopy), 241 (Control)	964	•	100.00	1.43 [1.25, 1.64]	
•	= 3.63, df = 4 (P = 0.46), ² = 0%				NNT=	7
			0.1 0.2 0.5 1 2	5 10		

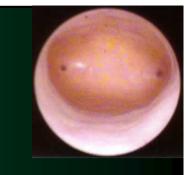
Favours control Favours hysteroscopy

Summary of literature

∨Small NNT

∨No complications reported

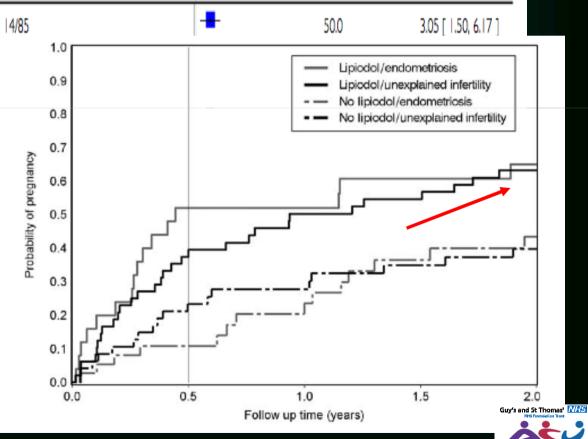
∨ Consistent results across all 6 studies



Therapeutic effect of a diagnostic test?

Peto Odds Ratio

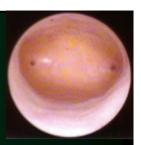
95% CI



Peto Odds Ratio

95% CI

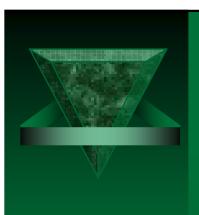
Study	OSCM	No treat	ment
	n/N	n/N	
Johnson 2004	28/73	14/85	
			1.0
Nugent 2002	5/17		0.9
Ogata 1993	25/105		8.0
T-+-1 (050/ CI)	IDE	jć.	0.7
Total (95% CI)	195	egnar	0.6
Total events: 58 (OSCM), 21 (No treatment)	of bu	0.5
Test for heterogeneity of	hi-square=1.39 df=2 p=0.5	Probability of pregnancy	0.4
Test for overall effect z=	4.69 p<0.00001	Prof	0.3


HSG

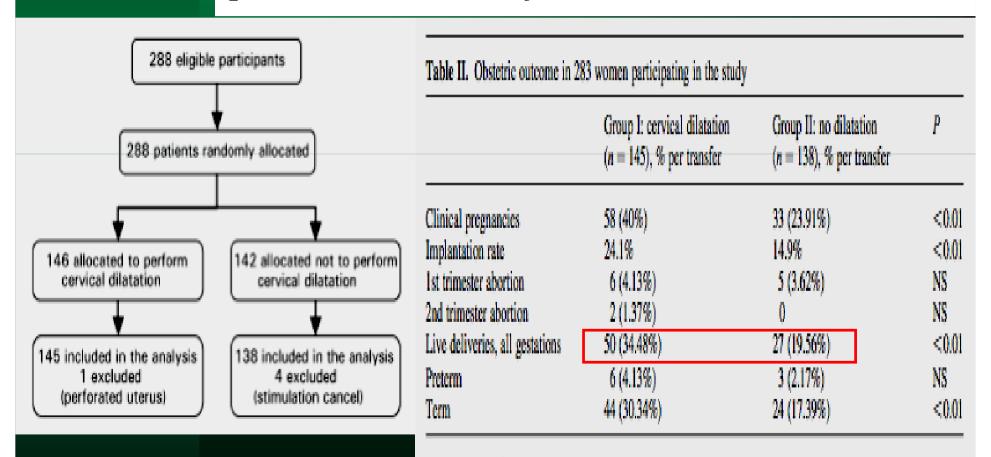
Weight

Biological explanation

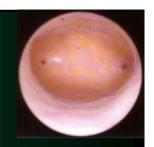
- **▼Identification/Correction of uterine pathology**
- **∀**Facilitate future transfers


(CX dil., direction and depth)

(Groutz et al., 2007, F&S; Pabuccu et al., 2005, JMIG)


▼Endometrial injury / stimulation

(Barash et al, 2003; Raziel et al, 2007; Zhou et al., 2008 – all F&S)



Cervical dilatation has a positive impact on the outcome of IVF in randomly assigned cases having two previous difficult embryo transfers

Endometrial injury: CPR

	Type of	Scratch	Control	P-value
	study	group	group	
Barash 03	Observational	67%	30%	<0.001
Li 07	Observational	69%	14%	0.01
Raziel 07	Observational	30%	12%	0.03
Zhou 08	Observational	48%	28%	0.01
Karimzadeh 09	RCT	27%	9%	0.02
Narvekar 10	RCT	33%	14%	<0.01

OR = 2.4 (95% CI 1.9-3.1)

Endometrial injury: CPR

Study	Treatment n/N	Control n/N	RR (fixed) 95% Cl	Weight: %	RR (fixed) 95% Cl	Year
A andomised controlled trials						
Karimzadeh	13/52	4/52		 36.83	3.25 [1.13, 9.31]	2009
Narvekar	16/49	7/51		63.17	2.38 [1.07, 5.28]	2010
Total (95% CI)	101	103		100.00	2.70 [1.43, 5.10]	
Test for heterogeneity: Chi² = 0 Test for overall effect: Z = 3.06					,,,	
Non-randomised controlled stu	udies					
Barash	30/45	27/89		38.50	2.20 [1.51, 3.20]	2003
Li	24/35	5/36		→ 10.47	4.94 [2.12, 11.48]	2004
Raziel	18/60	7/57		15.24	2.44 [1.10, 5.41]	2007
Zhou	29/60	17/61		35.79	1.73 [1.07, 2.81]	2008
Total (95% CI)	200	243				
Test for heterogeneity: $Chi^2 = 4$ Test for overall effect: $Z = 6.23$		5%		100.00	2.36 [1.80, 3.09]	
All studies						
Total (95% CI)	301	346	•	100.00	2.42 [1.88, 3.11]	
Total events: 130 (Treatment),	67 (Control)					
Test for heterogeneity: Chi² = 5 Test for overall effect: Z = 6.93		%				
		0.1	0.2 0.5 1 2 5	10	Guy's	and St Thomas'

Favours control Favours treatment

Endometrial injury: LBR

	Type of	Scratch	Control	P-value
	study	group	group	
Barash 03	Observational	49%	24%	0.02
Li 07	Observational	48%	11%	0.01
Raziel 07	Observational	22%	7%	0.07
Zhou 08	Observational	42%	23%	0.01
Narvekar 10	RCT	23%	10%	0.03

OR = 3.0 (95% CI 1.9-4.6)

Endometrial injury: LBR

Review: Local endometrial injury and IVF outcome

Comparison: 01 Endometrial injury and IVF outcome: All studies

Outcome: 02 OPR/LBR

Study or sub-category	Treatment n/N	Control n/N	RR (fixed) 95% Cl	Weight %	RR (fixed) 95% CI	Year
Barash	22/45	21/89	-	33.61	2.07 [1.28, 3.34]	2003
Ц	17/35	4/36	-	9.40	4.37 [1.63, 11.70]	2004
Raziel	13/60	5/57	-	— 12.22	2.47 [0.94, 6.49]	2007
Zhou	25/60	14/61		33.09	1.82 [1.05, 3.14]	2008
Narvekar	11/49	5/51	-	- 11.68	2.29 [0.86, 6.11]	2010
Total (95% CI) Total events: 88 (Treatment), 49	249 3 (Control)	294	•	100.00	2.28 [1.67, 3.10]	
Test for heterogeneity: Chi ² = 2.		6				
Test for overall effect: Z = 5.24			90 90			

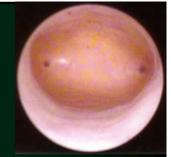
Favours control Favours treatment

Endometrial injury: RIF

Review: Local endometrial injury and IVF outcome

Comparison: 02 Endometrial injury and IVF outcome: RIF

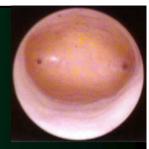
Outcome: 01 CPR


Study or sub-category	Treatment n/N	Control n/N	RR (fixed) 95% CI	Weight: %	RR (fixed) 95% Cl	Year
Barash	30/45	27/89	-	50.13	2.20 [1.51, 3.20]	2003
Raziel	18/60	7/57	<u> </u>	- 19.85	2.44 [1.10, 5.41]	2007
Karimzadeh	13/52	4/52	-	11.06	3.25 [1.13, 9.31]	2009
Narvekar	16/49	7/51	-	- 18.96	2.38 [1.07, 5.28]	2010
Total (95% CI)	206	249	•	100.00	2.40 [1.75, 3.28]	
Total events: 77 (Treatment)), 45 (Control)		1.77	1	1 gyt fortholise vis	
Test for heterogeneity: Chi ²	= 0.53, df = 3 (P = 0.91), l2 = 0%	6				
Test for overall effect: Z = 5	i.44 (P < 0.00001)					
		0.1	0.2 0.5 1 2	5 10		

Favours control Favours treatment

Biological explanation

- Release of cytokines and growth factors
 (LIF, IL-6 and 11, EGF) promoting endometrial
 development
- ✓ Alternation in endometrial gene expression (Laminin œ 4, Integrin œ 6, MMP1), which play key roles in implantation

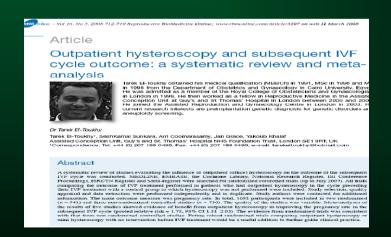

 backward
- Delay endometrial maturation, thus promoting synchronisation with embryo stage

development

Do we need more trials?

✓ Small number of randomised trials available

✓ Methodological limitations (e.g. no blinding, no allocation concealment)


∀Limited data on LBR

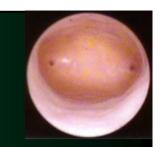
What did the systematic review recommend?

"...Future randomised trials comparing mini-hysteroscopy with no intervention before IVF treatment would be useful"

TRial of OutPatient HYsteroscopy

A multicentre randomised controlled study of the effects of outpatient hysteroscopy on the outcome of the subsequent IVF cycle after recurrent IVF failure. **Built with MedSciNet Clinical Trial Framework**

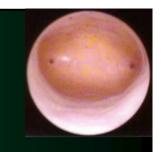
TROPHY Trial Protocol


Trophy Collaborators meeting - ESHRE March 2009

TROPHY Trial Protocol

Reproductive Health

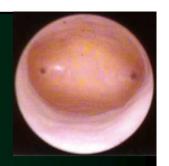
Study protocol


Open Access

A multi-centre randomised controlled study of pre-IVF outpatient hysteroscopy in women with recurrent IVF implantation failure: Trial of Outpatient Hysteroscopy - [TROPHY] in IVF

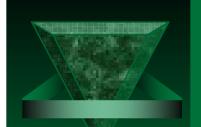
Tarek El-Toukhy*1, Rudi Campo², Sesh Kamal Sunkara¹, Yacoub Khalaf¹ and Arri Coomarasamy³

Hypothesis

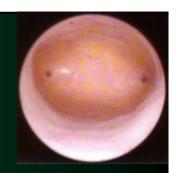


Does performing an OPH prior to starting an IVF cycle improve the live birth rate in women who have experienced 2-4 failed cycles?

Population

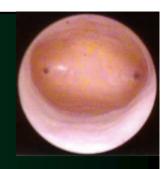


 \forall Women under 38, BMI ≤ 35


▼ Failed two-four failed IVF/ET cycles

▼ Normal TVS of cavity

Exclusion criteria



- ✓ Age 38 or above
- ✓ Less than 2 or more than 4 failed cycles
- ▼Fibroids distorting the cavity or untreated hydrosalpinges
- **∀**BMI>35
- ✓ Recent hysteroscopy (within 2 months)

Intervention

- ✓ Saline OPH (2.9-5mm) Trophy Scope
- **∨**Cycle before IVF
- Any standard IVF protocol
- ✓ Any type of FSH/HMG for stimulation

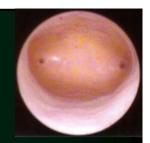
TROPHY scope (Storz) Campo Compact Hysteroscopes

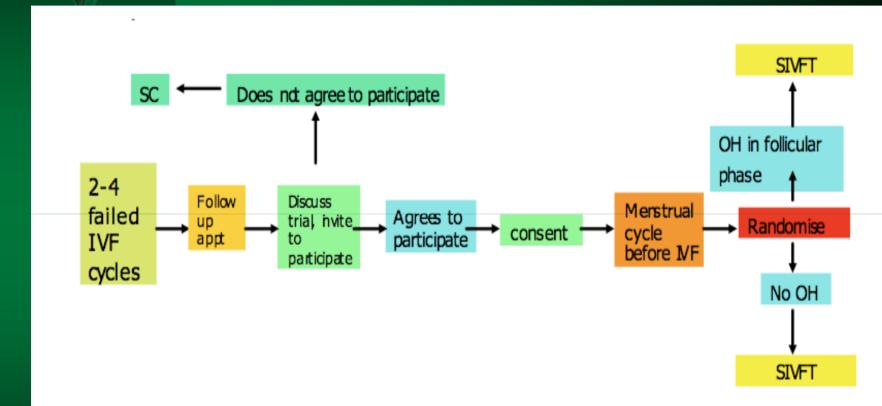


Telepack

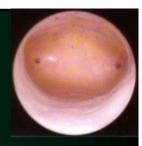
Control group

∨No hysteroscopy


∀Any standard IVF protocol


∀Any type of FSH/HMG for COS

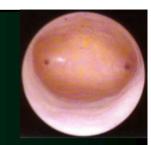
Participant flow in the study



SC=standard care, Appt=appointment, OH = outpatient hysteroscopy, SIVFT=standard IVF treatment

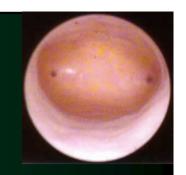
∀Primary:

- LBR/cycle started


∀Secondary:

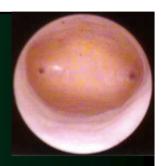
- PR, CPR and IR
- OPH findings
- Adverse effects (including miscarriage rate)
- Health Economic Evaluation

Sample size calculation

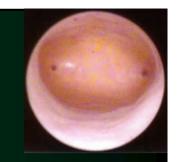

- For a DS alpha of 5%
- For a power of 80%
- In order to increase live birth rate from 25% to 35%, need 360 + 360 = 720 women
- -5% drop out rate = 38

758 (379 in each arm) across 8 European centres

Funding

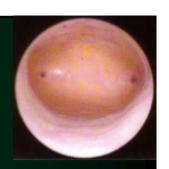


- **∀**Participating centres
- ▼ESHRE and EAGE (logistic support)
- ▼Karl Storz = OPH instruments and training in each of the participating 8 centres
- ✓ Tristel = sterilisation


Analysis

- **✓** Comparative analysis (within study, with patients outside study)
- **∀** Minimisation
 - Age <31, 31-37 years
 - BMI <30, 30-34
 - Number of previous failed cycles
 - 2
 - 3-4
 - FSH level
 - <10
 - 10 or more
- **∀** Adjustments and sensitivity analysis
 - Logistic regression (hysteroscopy findings: normal, abnormal, control for centre effect)

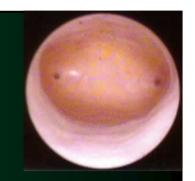
Prognostic variables



Assisted Conception Unit

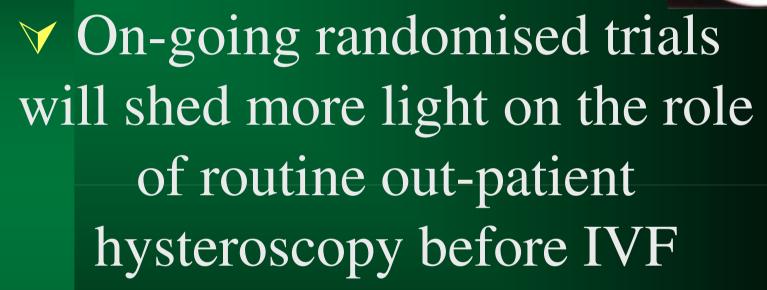
Targets and timelines

√450 cases by end of 2011


∨Complete study by mid 2012

∀Publication of LB results in 2013

Conclusions



- **✓** Hysteroscopy is a safe and effective diagnostic and therapeutic tool in ART patients
- **▼ Treatment of intra-uterine pathology can improve ART outcome (Level I-III)**
- ✓ Diagnostic Hysteroscopy before IVF is likely to improve outcome in subsequent IVF cycle (Level I)

The future...

