Recurrent Miscarriage

and Antiphospholipid

Syndrome

Jana Skrzypczak

Recurrent miscarriage (RM) three early consecutive losses or two late pregnancy losses

The definition of late fetal loss has varied from 10 weeks gestational age until later than 20 weeks

Causes of RM

- structural chromosomal abnormalities in the parents
- antiphospholipid syndrome
- uterine anomalies
- · fetal chromosomal abnormalities
- endocrine and immunological factors

Antiphospholipid Syndrome (APS)

• Preventable cause of:

- embryonic and fetal loss

- maternal thrombotic complications
- Management of an aPL-positive patient during
 pregnancy should focus on the prevention of
 both fetal and maternal complications

Speculation on APS in the Coming Millenium Graham Hughes J.AL, 2000

One fetal death increases the risk of further fetal deaths 20 - fold APS is and will be in the coming millenium recognized as the major cause of this tendency

Today's Discussion Points

- Introduction
- aPL prevalence in women with recurrent
 miscarriage
- Mechanism of fetal loss in women with APS
- Management of aPL-positive patients
 during pregnancy and postpartum

Sydney Criteria for APS

Vascular thrombosis

Arterial, venous, or small vessel thrombosis
 in any tissue or organ

Pregnancy morbidity

- + ≥ 3 unexplained consecutive spontaneous abortions $$<\!10^{th}$$ week of gestation
- + \geq 1 unexplained deaths of a morphologically normal fetus $\geq 10^{th} \mbox{ week of gestation}$
- \geq 1 premature births of a morphologically normal neonate \leq 34th week of gestation because of eclampsia or severe preeclampsia or placental insufficiency

Laboratory criteria

- Lupus anticoagulant (LA) present in plasma on ≥2 occasions at least 12 weeks apart and/or
- 2. Anticardiolipin (aCL) antibody of IgG / IgM isotype in serum in medium or high titer (ie >40 GPL or MPL) on \ge 2 occasions et least 12 weeks apart or
- 3. Anti β_2 glycoprotein 1 antibody of IgG / IgM isotype in serum (in titer > the 99th percentile) on \geq 2 occasions at least 12 weeks apart

Miyakiss et al., International consensus statement on an update of the classification criteria for define antiphospholipid syndrome. J. Thromb. Haemost. 2005

Etiology of APS

APS may have multifactorial etiology

One environmental factor is infection

Series of 100 women with APS

skin infections – 18%

human immunodeficiency virus (HIV) – 17%

• pneumonia – 14%

hepatitis C virus – 13%

• urinary tract infection - 10%

Cervera R et al., Ann. Rheum Dis., 2004

Assays for the detection of aPL

aPL that do not prolong phospholipid – dependent clotting assays can be detected by immunoassays using phospholipid coated surfaces Antibodies against cardiolipin (aCL) phosphatidylethanolamine (aPE) (aPS) phosphatidyloserine must be identified by phosphatodylcholine (aPC) phosphatidylglycerol (aPG) ELISA phosphatidylinositol (aPI) β_2 -glycoprotein 1 (a β_2 GP1)

The results are expressed in aPL units 1 unit being equivalent to the binding capacity of 1 µg/ml pure phospholipid

Assays for the detection of aPL

aPL that prolong phospholipid – dependent cloting assays (LA) can be detected by cloting time prolongation assays

These tests include

- the activated partial thromboplastin time (aPTT)
- the diluted Ressull's viper venom time (dRVVT)
- the kaolin cloting time (KCT)

Types of aPL – associated abortions

LA, aCL, $a\beta_2$ GP1 – are <u>causative</u> of pregnancy loss but other aPL e.g aPC, aPG, aPA, aPJ are of diagnostic significance

Measurement of aPS (phosphatidylserine) and aPE (phosphatidylethanolamine) is indicated in women with early recurrent pregnancy loss

Isotype of aPL

Most aPL are the IgG or IgM class only 10% may be IgA

Predominate role of IgG antibodies in women with RM

Titer of aPL

Medium and high titers of aCL and/or other aPL antibodies (>40 GPL units) identify the women who require pharmacological prophylaxis in the next pregnancy

aPl prevalence

Recurrent Early Miscarriage

- 5% to 20% of women with Recurrent Early Miscarriage have been reported to have aPL, and thus "APS"
- In past studies, many of these women did not meet criteria for *definite* APS
 - Low titers
 - No repeated testing
 - Use of poorly standardized tests
 - Branch W., 12° International Congress on Antiphospholipid Antibodies

Florence 2007

Rai et al. 1995

500 women with three and more miscarriages (3-16) 15% were LA and/or aCL positive

Oshiro BT 1996

among 366 patients with two and more pregnancy losses

21.5% women were aPL-positive (\geq 20 GPL)

80% patients experienced at least one stillbirth

123 patie	ents with preg	nancy loss
<u>aCL</u>	LA	$\underline{a\beta_2 GP_1}$
3	2	14
2.4%	1.6%	11.4%
		Skrzypczak J., et al. 2008

Recurrent Early Miscarriage

Design

- Retrospectively analyzed population presenting with Recurrent Early Pregnancy Miscarriage
 - * All patients evaluated in similar fashion with particular attention to establishing the timing of each pregnancy loss
- All were tested for antiphospoholipid antibodies
- Patients that initially tested positive had repeat levels performed

Branch W., 12° International Congress on Antiphospholipid Antibodies Florence 2007

- APS/RM is over diagnosed if miscarriage are not sent for cytogenetic analyses
 - 29 couples were excluded when 40% of their miscarriages were tested
 - 164 couples were included when only 6% of their miscarriages were tested
- Including cytogenetic analyses of ≥1 miscarriages in the APS/RM criteria would result in a more homogeneous cohort

Stephenson M.D., 12° International Congress on Antiphospholipid Antibodies Florence 2007

Mechanisms of action

Arachidonic acid and prostacyclin aPL inhibit arachidonic acid release; the alteration in the PGI₂/ TXA₂ - vasoconstriction

- platelet activation

Anticytokine effect

 IL_{3} serum level is lower in pregnant women with APS $TNF\alpha$ serum level is higher in patients with APS

Induction of placental cell apoptosis

Mechanisms of action

Recent data

Inhibition of trophoblast invasiveness

PL antibodies recognize as antigens some membrane PL like PS and react with PS

they would exert inhibitory effect on

- 1. trophoblast intercellular fusion
- 2. chorionic gonadotropin secretion
- 3. trophoblast invasiveness

Mechanisms of action

In vitro studies

- aPL can bind to human trophoblast cells
- Circulating aPL might interact with endothelium of maternal vessels (which prevent the correct endothelial-trophoblast interaction)

Another hypothesis

aPL may directly bind to the

endovascular trophoblast populations

dissolution or abnormal formation of endovascular trophoblast phenotype

Summa	ry of ant on tre	•	spholip blast f		-	effects	5
Antibody	Cell type	Binding	Trophoblast proliferation	HCG and HPL secretion	Trophoblast invasiveness	Trophoblast fusion	Reference
Polyclonal aPL (IgG)	Primary trophoblast cells	++		Reduced by 40%	Completely blocks	Completely blocks	Di Simone Et al. (1999)
Anti-β2-glycoprotein I	Choriocarcinoma cells	++	Completely blocks				Chamley et al. (1998)
Antiphosphatidylserine	Choriocarcinoma cells	++		Reduced by 40%	Completely blocks	Completely blocks	Rote et al. (1995, 1998)
Antiphosphatidylserine	Primary trophoblast cells	++		Reduced by 50%	Completely blocks		Katsuragawa et al. (1997)

HCG = human chorionic gonadotrophin;

HPL = human placental lactogen

of antiphospholipid (aPL) antibodies				
Authors	Effects			
Peacemane et al. (1993)	Increase of placental thromboxane A2	300% versus controls		
Fishmann et al. (1996)	Reduction of trophoblast interleukin -3	71% versus controls		
Di Simone et al. (1997)	Reduction β-HCG secretion	40% versus controls		
Di Simone et al. (2000)	Reduction of trophoblast cells invasiveness	25% versus controls		
Rote et al. (1998)	Inhibition of syncytiotrophoblast formation	82% versus controls		

A mouse model – Salmon J., Givardi J

Passive transfer of IgG from women with RM and aPL

antibodies results in 40% frequency fetal resorption

compared to < 10% in mice treated with IgG from healthy individuals

- Inhibition of the complement cascade in vivo using the $\rm C_3$

convertase inhibitor Cvry-Ig prevented fetal loss and growth restriction

J. Reprod. Immunol., 2008, 77, 51-56

Management

Current recommendations for women with antiphospholipid syndrome and recurrent miscarriage include treatment with a combination of

low dose aspirin and

a low dose of either unfractionated or low – molecular – weight heparin

Bates S., et al. Chest 2004 sup 126, 6275-644S Pabinger I., Vormittag R., J. Thromb. Haemost 2005, 3, 1603-1610

Why aspirin ?

- · Improves placental blood flow
 - decreases thromboxane A₂ / prostacyclin ratio
- · Stimulates IL-3 production
 - $\mathrm{IL}_{\scriptscriptstyle 3}$ is a growth factor for the trophoblast
 - * promotes invasion and expansion

Live birth rate in patients with occasional antiphospholipid antibodies treated with aspirin and unexplained

Why heparins?

- inhibit coagulation
- have anti-inflammatory effects
- prevent leukocyte adhesion to vascular endothelial cells and transmigration
- · block activation of complement
 - (at multiple levels of the cascade)
- · limit antibody targeting to trophoblast
- enhance trophoblast invasiveness

Studies on live-birth rates to pharmacological treatment in women with aPL and recurrent early pregnancy loss or least one fetal in absence of SLE or previous thrombosis

Reference	Years Study of publications type	A	No. of women			birth (%) according to acological treatment			
			None	P+A	Α	A+H	IvIG		
Cowchock et al.	1992	Rando	20		75		75		
Balasch	1993	Pro, O	18		100	91			
Silver et al.	1993	Rando	34			100			
Rai et al	1995	Pro, O	20	10					
Kutteh	1996	C, NR	50			44	80		
Kutteh and Ermel	1996	C,NR	50				80/76		
Tuppala et al.	1997	Rando	12	17		17			
Laskin et al.	1997	Rando	88	52	60				
Rai et al.	1997	Rando	90			42	71		
Backos et al.	1999	Pro, O	150				71		
Pattison et al.	2000	Rando	40	85		80			
Farquharson et al.	2002	Rando	98			72	78		
Triolo et al.	2003	Rando	40				84	57	
Noble et al.	2005	C, NR	50				84/80		

heparin						
	Trial					
	Rai et al. (1997), randomized	Kutteh (1996), prospective, controlled (non-randomized)	Farquharson et al. (2002), randomized			
ive-birth rate (%)						
LDA	45	44	72			
LDA + H	71	80	78			
Patients (n)	90	50	98			
LAC positive (%)	91	0	42			
Cut-off IgG-aCL (U)	5	27	9			
Cut-off IgM-aCL (U)	3	23	5			
Start LDA	Positive pregnancy test	Preconception	Before 12 weeks			
Start heparin	Positive fetal heart activity	Positive pregnancy test	Positive fetal heart activity			
Heparin type	Unfractionated	Unfractionated	LMWH			
Heparin dosage	Fixed	adjusted	Fixed			

Antiphospholipid syndrome dilemmas

still to be solved: 2008 status

Future directions for APS research

- Aetiology role of infection, drugs, tumours
- Mechanisms complement role, cytokines/chemokines role
- Diagnostics additional autoantibodies (Multiplex)
- Therapy anticoagulation resistant cases
 primary prophylaxis

Shoenefeld et al. Ann. Rheum. Dis. 2008, 67, 438-441

