Embryo / blastocyst cryopreservation: which embryo, which blastocyst and which method

> Kersti Lundin Reproductive Medicine Sahlgrenska University Hospital Göteborg, Sweden

Cryopreservation of embryos

To preserve fertility

To increase cumulative pregnancy rates

To prevent multiple pregnancy rates

Cryopreservation in ART

To preserve fertility

To increase cumulative pregnancy rates

To prevent multiple pregnancy rates

Ī

Survival Pregnancy

Slow cooling	Vitrification
Cooling rates: 0.3 °C / min	 Cooling rates: 2.000 - 20.000 °C / min
 Controlled ice crystal formation (nucleation / "seeding") 	 No ice crystal formation Toxic CPA concentrations?
Thawing rate	Thawing (warming) rate

- At a certain temperature the kinetic energy of the molecules will become lower than the binding energy
- Molecules will start to organise into clusters that may grow into structures (crystals)
- They will try to organise into the energetically most favourable positions

Vitrification ("Glass transition")

- If the cooling occurs fast enough, the molecules never reach their energetically preferred position
- They will form a glassy state: a non-equilibrium, amorphous, disordered state of extremely high viscosity.
- The transition to glass is a function of cooling rate and solute concentration

Factors that affect cell survival:

Species
Development stage
Type of cryprotectant
Method of cryopreservation

Seeding (nucleation)

Initiation of ice formation in a controlled manner slow ice propagation through the solution

Avoids the damage of supercooling —— uncontrolled ice formation

Ice crystallisation

Removes water from the solution

- higher salt conc. in solution
- water passes out of cells
- higher osmotic pressure within the cell
- · cryoprotectant moves into cells

 Also during slow cooling the cells will be exposed to very high concentrations of solutes, similar to during vitrification
 However, during slow freezing this occurs at low

• However, during slow freezing this occurs at low temperatures, when the cells are less active

Embryo "quality" criteria – fresh vs. cryopreservation survival

- PN morphology
- no MNB
- 4 cells (8)
- even sized cells
- < 20 (-30?)% fragmentation</p>
- first cleavage before 25-27-hours
- 1 nucleus / cell

Number of cells (prefreeze) Sahlgrenska University Hospital (n=458)				iska
Cell survival	100%	60-80%	< 50%	mean
4 cells (n=320)* #	55%	18%	27%	69.1
5 cells (n=94)*	37%	24%	39%	60.0
6 cells (n=44) #	34%	32%	32%	63.6
* p= 0.002	, #p=0.	009		

Implantation vs. prefreeze o	
5572 embryon	
2 cells frozen day 2	7.2%
4 cells frozen day 2	16.9%
4 cells frozen day 3	5.5%
Non-intact 4 cells day 2	<11%
Fresh 4 cells day 2	16.6%
~ 30% implantations lost due to cryopreservation (30-35% SI	U) Edgar et al 2000

20	· ·	393 SET) Sahlg sity Hospital	renska
	Survival, %	Implantation (%)	
	100 *	232/967 (24)	
	70-90 *	56/325 (17)	
	60	9/63 (11)	
	40-50	7/65 (14)	
	* p= 0.011		

Embryo morphology (640 4-cell embryos froze			
Cell survival	100%	75%	< 50%
Grade 4:1+4:2A (n=435)	46% *	15%	39%
Grade 4:2B (n= 160)	36% *	15%	49%
Grade 4:2c (n= 45)	53%	10%	37%
A= <20% fragm B= irregular cell size c = slightly granular	*p= 0.034 100% 4:	1 for 1+4:2A vs	4:B

Take home message - cleavage stage embryos • Prefreeze embryo characteristics influence

- survival rates after cryopreservation
- Survival rates after cryopreservation affects implantation rates
- I.e. Prefreeze embryo characteristics does affect implantation rates

Early cleavage and survival rates (297 embryos frozen separately on day 2)

Cell survival	100%	> 50%
Early cleavage	52%	14%
Late cleavage	59%	11%

Influe	ence of	media (c	ulture and	cryo)
	Culture/	CM1+FM1	CM2+FM2	
	Freezing	(HEPES)	<u>(PBS)</u>	
	N=	1321	305	
	100%	44.9%	32.8%	
	75-90	12.3%	15.4%	
	% GQE	51%	56%	

9

Blastocyst quality a	and su	uccess	rates
Blastocyst quality	Bad	Good	Morula
Vitrification warming cycles	113	184	59
Survival 24 hours	54%	80%	63%
Impl. / transferred embryo	6%	22%	18%
(P. vanderzwalmen), F	Prague 200	7, Cremed	es et al, 2008)

Extended culture before or after cryopreservation ? Calculation......

- 100 GQE embryos
- 100 GQE embryos
- 45 blastocysts
 36 survive (80%)
 20 implant (55%)
 60 cryo quality
 40 survive >75% (65%)
 10 implant (25%)

Vitrification vs. Slow freezing

S) Vitrifi		age sta . slow fr			OS vival rate
Odds ratio of pos	thawing survival rat	le of cleavage stag	e embryos after v	it fication	and slow freezing.
Study	hterification	Slow free ling	OF (random) 96% CI	Weight 5	CR (random) 95% CI
Rama-Raju	121/127	72/120	+	34.00	13.44 [5.48,32.96]
Zheng	44/49	8/12		29.71	84.33 [21.03, 336.
Kuwayama	875/837	457/942	•	37.28	4.84 [2.89, 8.12]
Total (85% CI)	1071	1:14	•	300.00	15.57 (2.68, 65.62
Test for heterogeneil	/Inification), 907 (Slow In ly: Chi ² = 15.94, df = 2 (F s: Z = 3.73 (P = 0.0002)				
		0.001 0.0	1 0.1 1 10 100	1000	
		Favors slow fr	eecing Favors vit	ification	
			Loutra	di et al, I	Fertil Steril, 2007
			Loutra	di et al, I	Fertil Steril, 2007

Pregnanc	cy/transfei	rate	
	Vitrified	Slow- freezing	P-valu
	%	%	
Rama Raju, 2005	35	17.4	NS
8-cells embryos, ET day 3	(14/40)	(4/23)	
Kuwayama, 2005	27	32	NS
4-cells embryos, ET day 5	(136/504)	(172/536)	

Summary Cryopreservation of early cleavage stage embryos

- RCTs indicate higher survival rate with vitrification as compared with slow freezing
-but similar pregnancy rates
- Controlled studies show similar (or better?) perinatal outcome after slow freezing as compared with fresh IVF
- No adverse effect on children born after vitrification has been reported, but experience is limited

	Vitrified	Slow- freezing	P-value
	%	%	
Huang, 2005	53.8	No	
Blastocysts	(7/13)	controls	
Kuwayama, 2005	53	51	NS
blastocysts	(2516/4745)	(50/98)	

Vitrifi	Blastocys cation & Neona	
Fresh blastocysts		Vitrified
Live born	208	147
Major and m Total (%)	inor defects: 4 (2.0)	2 (1.8)
		Takahashi et al, Fertil Steril 2005

Summary Cryopreservation of blastocysts

- RCTs indicate higher survival rate with vitrification as compared with slow freezing
-but similar pregnancy rates
- No adverse effect on children born after vitrification has been reported, but experience is very limited

Vitrification			
Pro´s	Con's		
 No intracellular ice Very fast, if few embryos High survival rates Low cost?? 	 Not so fast if many embryos Potentially more toxic Possible contamination from N2 		
	Other risks ? (child outcome?)		

Conclusions

- Vitrification may be an alternative to slow freezing but still experimental
- Associated with higher survival rates than slow freezing – but not increased LBR / PR
- Prospective trials needed to confirm this and to evaluate pregnancy rates and outcomes
- Small number of births and few controlled studies

The search for excellence..... In the lab (cryo)

- Remember that cryopreservation is (can be) an important contribution to live birth rate!
- Morphology (before and after cryopreservation) – cryopreserve good quality embryos / blastocysts – transfer preferably intact
- · Vitrification vs. Slow-freeze?

Thank you !

Damages of low temperature

- Low temperature per se e.g. phase transitions in membranes, denaturation of proteins
- Direct effects of freezing intracellular ice formation, membrane damages
- Indirect effects of freezing changes in ionic interactions (high salt concentrations), cellular ultrastructure changes (dehydration)

Resultat slow cooling day 2- SU

- Survival rate Intact: ~ 50% 75 – 100%: ~ 70%
- Implantation rate 23%
- Live Birth rate 18%

Cryoprotectants

Dimethyl sulfoxide (DMSO)
Glycerol
Ethylene glycol (EG)
1,2-propanediol (PrOH)

Embryo criteria (day 2) - FER

- no MNB • 4 cells (- 8) +
- even sized cells +
- < 20% fragmentation
- first cleavage before
- 25-27 hours +
- 1 nucleus / cell +

<u>Cryopreservation</u> • no MNB • 4 cells (- 8) + • even sized cells + • < 20% fragmentation • first cleavage before

- 25-27 hours ±
- 1 nucleus / cell ?