

Standard glas pH probes ISFET probes RI pH meter MTG pH meter Bloodgas analyser

pH measurements — glas electrode • Calibration temperature = measuring temperature = 37°C → Calibration (buffers ~7 ~9) at 37°C • Fragile • Needs big volume (min 1 ml) — needs equilibration • Not standardised → 2 ml in 15 ml tube (R Pool) → 50ml in flask — over night (Don Rieger) → 1 ml in 5 ml tube — over night (UZ Brussel) • Measurement under ambient conditions • Not suitable for microdrops • Does not represent actual culture conditions • Leakage of electrolytes over time

RI pH meter + Measurement in incubator is possible - Slow! - Drift over time - Difficult/time consuming calibration procedure - Does not reflect reality (microdrop culture)

nЦ·	conclusions			
ρι i.	CONCIUSIONS			
		G-MOPS	HTF-HEPES	
	Glas electrode	7,31	6,48	
	Flattrode	7,56	7,64	
	RI	7,07	7,27	
	ISFET	-	7,81	
	Blood gas analyzer	7,22 (7,27 ± 0,05)	7,31 (7,3 – 7,5)	
	cult (measuring erroration, sampling and	•		bes,
- Doe	s not detect fast ch	anges in CO ₂	concentratio	n
• Not	suitable for routine	control of inc	ubators	
• Use meth	full to detect manip od)	ulation/handlir	ng errors (val	idation of
(⊳ •Dor	ot rely on one meth	od – verify wit	th bloodgas a	analyzer
8	of the state of th			Ormanisor Reprodutose Generalunas
11				15-2-2010

Temperature: heating and cooling					
	Optimal T° after (min)	Complete cooling after (min)			
3,5 cm culture dishes (3 ml oil)	~ 20	~ 20			
Centre Well (500 µl medium + 1 ml oil)	~ 20	~ 15			
Centre Well (500 µl medium)	~ 30	~ 15			
Nunc (500 µl medium + 400 µl oil)	~ 30	~ 25			
Nunc (500 µl medium)	~ 40	~ 20			
*		Occurs year Reproduction Generalunds			

Oil overlay slows down gas exchange and pH changes – limited protection Oil overlay reduces evaporation – osmolality and temperature changes pH and temperature maintenance outside incubator is problematic Humidification of incubator is not necessary (with oil overlay)

Oxygen – Meintjes et al. Hum Repr vol 24, 2009 • Embryos cultured in a 5% O₂ environment consistently resulted in higher rates of live birth implantation (42,9% versus 30.7%) and live births (57.4% versus 42.6%) when compared with rates among women whose embryos were cultured in an atmospheric O₂ environment. • Only 7 patients have to be cultured in a reduced O₂ culture environment to result in one additional live birth Acontrolled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocycl transfer program - Meiniges et al. Human Reproduction, Vol.24, No.2 pp. 300-307, 2009

- Temperature and pH changes do occur but are limited
 - → 0.3°C
 - \rightarrow 0.08 to + 0.05 pH
- Is this relevant?
 - → No one has identified and characterized a precise pH optimum for the culture of human embryos
 - → Temperature optimum????

Mini incubator: Conclusions Integrated gas mixer CO₂ concentration in premixed gas is variable More difficult to monitor – safety? Allow individual culture Less variations in temperature and gas conditions Alternative to standard incubators

The "growing" Challenge Today Increasing regulatory demands - Implementation of new requirements/standards Implementation of clean room technology in IVF Isolation of product from environment Class II LAF is not compatible with accurate temperature controle VOC levels pH - temperature control outside incubator is suboptimal

The future: - Controlled work environment – isolators? • Integration of functions: workbench – incubator – microscopes • 37°C – CO₂ (O₂)regulated – humidification • Enclosed box = improved environmental control (Temp/pH/pollutants/microbes/particles) • EU directives compliant → Cellcura → K-Systems → Ruskin Active → Vitrosafe

