Involvement of local factors in aberrant follicle development

Stephen Franks, Fabio Comim and Kate Hardy

Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 ONN

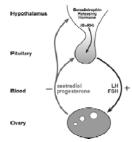
Imperial College London ESHRE Campus Symposium, Stresa, Italy April 19-21 2012

Involvement of local factors in aberrant follicle development

- Follicle development in the human ovary
- Disordered preantral follicle development in PCOS
- Local factors implicated in aberrant follicle development in PCOS

Involvement of local factors in aberrant follicle development

- Follicle development in the human ovary
- Disordered preantral follicle development in PCOS
- Local factors implicated in aberrant follicle development in PCOS



Human follicle development Preantral Antral Gonadotropin "sensitive" (several months) Gonadotropin dependent (six weeks) 40 μm Graafian primordial primary secondary early antral (pre-ovulatory)

Anovulation is a common cause of infertility

- Disorders of ovulation account for about 25% of causes of infertility
- Most are due to abnormal endocrine environment
- Most are treatable

Causes of anovulation

- Primary ovarian failure (8%)
- Deficiency or disordered regulation of gonadotrophins (32%)

 - Functional: weight loss; exercise; idiopathic
 Organic: Kallmann's syndrome and its variants; prolactin excess
- Polycystic ovary syndrome (55%)
- Miscellaneous (5%)

Involvement of local factors in aberrant follicle development

- Follicle development in the human ovary
- Disordered preantral follicle development in PCOS
- Local factors implicated in aberrant follicle development in PCOS

Polycystic ovary syndrome

- Characterised by anovulation with clinical (hirsutism/acne) and/or biochemical evidence of androgen excess
- Typically presents during adolescence
- Affects >5% women of reproductive age
- Commonest cause of anovulatory infertility (>75% cases)
- Typical endocrine features are raised testosterone and LH
- Also associated with metabolic abnormalities and increased risk of type 2 diabetes

Polycystic ovary syndrome

- Aetiology uncertain
- Genetic factors important

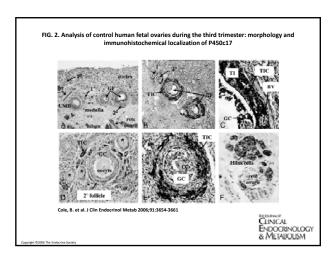
Developmental origin of PCOS: an hypothesis

- Polycystic ovary syndrome is a genetically-determined, primary ovarian disorder resulting in excess androgen production
- $\bullet\;$ The capacity to hypersecrete androgens begins in fetal life
- Typical clinical and biochemical features of PCOS are "downstream" effects of exposure to androgen excess at or before puberty
- Phenotype may be influenced by other genes and by environment

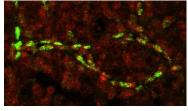
Abbott, Dumesic & Franks, J Endocrinol 2002, 174 1-5

A primate model for PCOS: evidence for a key role for androgens

Rhesus monkeys, exposed to high concentrations of androgens during fetal life, as adults show:

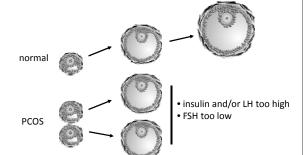

- Hypersecretion of LH
- Ovarian hyperandrogenism
- Insulin resistance
- Anovulation in relation to increased body weight

Abbott et al, Trends Endocrinol Metab 1998 9 62-7 Eisner et al, J Clin Endocrinol Metab 2000 **85** 1206-10 Eisner et al, Fertil Steril 2002 **77** 167-72


(Also sheep and rodent models)

genetic predisposition to secrete excess androgen activation prenatally, in infancy & at puberty Testosterone insulin resistance/hyperinsulinaemia environment genes regulating folliculogenesis steroidogenesis steroidogenesis

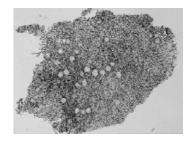
•		
•		
•		
•		
•		
•		

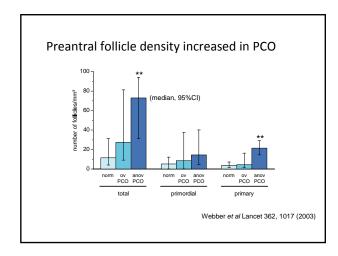

Androgen receptor expression in 19w human fetal ovary

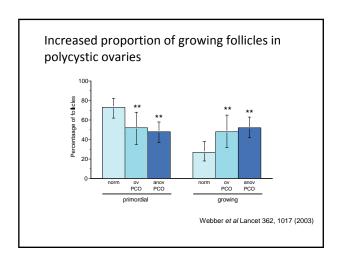
AR+ve somatic cells surround clusters of germ cells

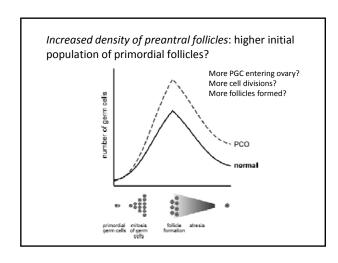
Richard Anderson; from Fowler et al, Development of Steroid Signaling Pathways during Primordial Follicle Formation in the Human Fetal Ovary J Clin Endocrinol Metab, 2011 96 1754-62

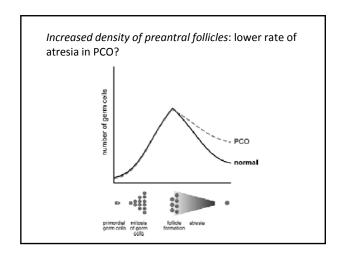
Arrested antral follicle development in PCOS

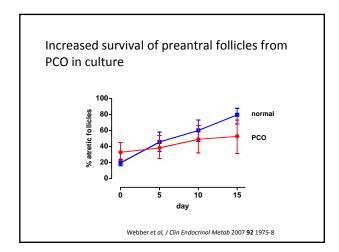


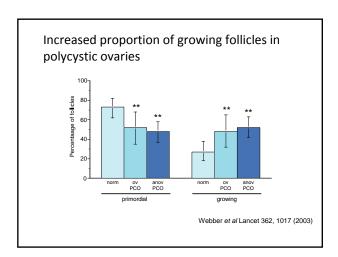

Preantral Gonadotropin "sensitive" (several months)			Antral Gonadotropin dependent (six weeks)	
0	O	0.5		
40 μm primordial	50 μm primary	>70 µm secondary	0.2 mm early antral	20 mm Graafian

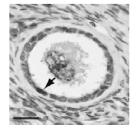

What about preantral follicle development in PCOS?

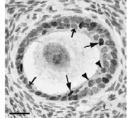

Analysis of biopsies of ovarian cortex


- Biopsies of ovarian cortex, fixed, serially sectioned & stained (H&E)
- Follicles:
 - counted
 - assessed for stage of development &
 - atresia/health

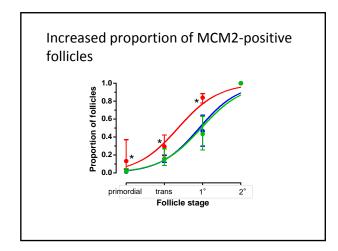


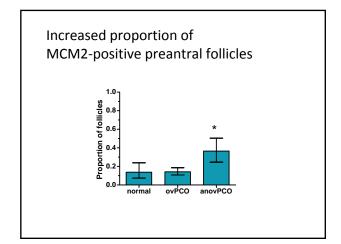


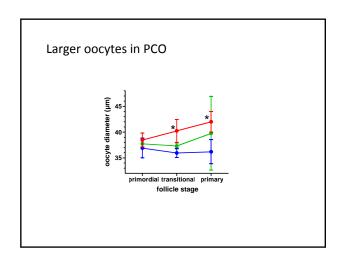


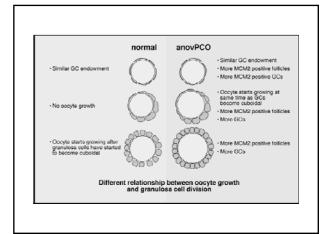

Reduced atresia may contribute to the higher density of preantral follicles in PCOS

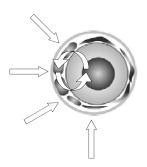
But what factors are involved in increased activation?


More granulosa cells in PCO ***JanovPCO normal ovPCO no


MCM-2 (cell proliferation marker) in primary follicles




Stubbs SA, et al. 2007; J Clin Endocrinol Metab 92: 4418



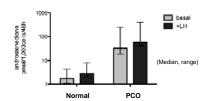
Altered relationship between oocyte growth and GC proliferation State of the state

Implications:

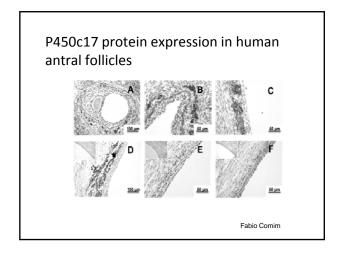
- Intrinsic defect in early follicle development in PCO, which may involve
 - altered inter-follicular signalling
 - altered intra-follicular signalling

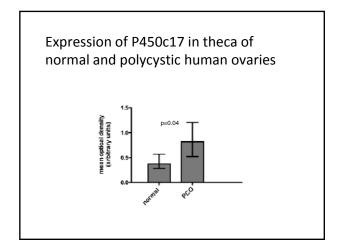
Involvement of local factors in aberrant follicle development

- Follicle development in the human ovary
- Disordered preantral follicle development in PCOS
- Local factors implicated in aberrant follicle development in **PCOS**

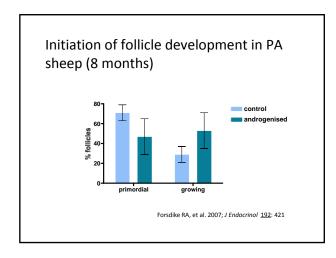


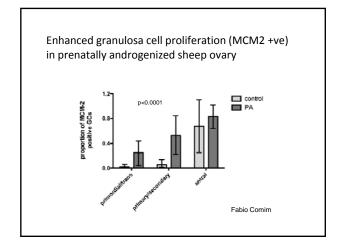
Increased activation of primordial follicles in PCO

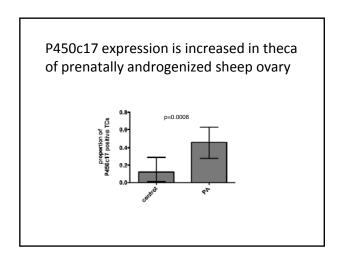

- less inhibitor?
 - Reduced AMH expression in early preantral follicles
- increased stimulator?
 - IGFs
 - androgens

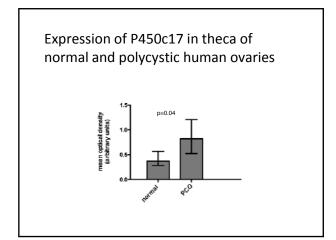

Source of excess androgen in PCOS

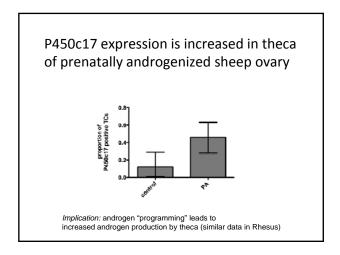
PCO theca cells produce 20-fold more androstenedione in culture than normal theca; phenotype is maintained after several passages

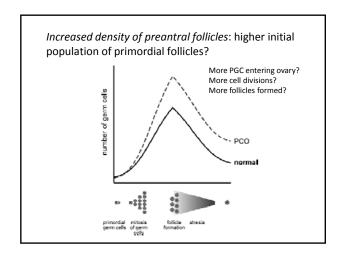

Gilling-Smith et al, 1994, Nelson et al, 2001

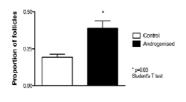





Androgens and preantral follicle development


Lessons from the prenatally andogenized sheep





Proportion of germ cells in follicles in fetal sheep ovary (d90)

Androgens and aberrant follicle development in PCOS

- Prenatal exposure to excess androgen in sheep affects follicle formation and early follicle development
- Is this relevant to PCOS?
 - AR in fetal and adult follicles
 - abberant follicle development shows many features similar to effects of PA in sheep
- Where does excess androgen come from in human PCOS, what causes it and when is it manifest?

Summary

- Preantral follicle development depends largely on local ovarian factors
- Preantral follicle development is abnormal in PCOS
- The local factors involved remain unclear but exposure to excess androgen in early life may be a key event

What comes first - abnormal early follicle development or increased ovarian androgen production?	
With special thanks to	
Fabio Comim Kate Hardy	
Lisa Webber Sharron Stubbs Rachel Forsdike	
Jane Robinson Jaroslav Stark	
Imperial College London CAPES (Brazil) MRC Medical Research Council	