VII MAMMALIAN FOLLICULOGENESIS AND OOGENESIS ESHRE WORKSHOP

Insights into oocyte competence from cumulus cells gene expression

> Johan Smitz Follicle Biology Laboratory Vrije Universiteit Brussel (VUB) Brussels / Belgium

CONTENTS

Measure gene expression in cumulus

 to help in selecting oocytes for maturation capacity choose embryo to transfer

help to make decisions in ART (culture / SET)
help developing better culture conditions

Cycles at UZBRUSSEL from Age group 23-43 YEARS

Cycles: n=23.353

1-5 M2: n=7.293
6-10 M2: n=8.501
11+ M2: n=7.560

Number mature oocytes needed per Live Birth (23-43)

N = 23.353 transfers 140 120 100 80 \rightarrow M2/LB(min) 60 M2/LB(max) 40 20 0 age 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Live Birth / Fresh embryo transferred N = 23.353 transfers

Number of embryos required for transfer per baby born

V. Vlaisavljevic (2010)

Difficulties to make the right choice Recent data from actual culture systems

- Day 3 morphology : consider 3 categories :
 TOP, GOOD, MINIMAL
- Blastocyst consider 3 gradings :
 - excellent and good (1)
 - other type (2)
 - No blastocyst was formed (3)

RESULTS:

TOPon day 3 : 46% became 1, 27% : 2, and 27% : 3GOODon day 3 : 24% became 1, 28 % : 2, and 47 % : 3MINIMALon day 3 : 6% became 1, 17% : 2, and 76% : 3

Blasto culture, 1 blasto transferred

multicentric study on 619 patients

Blastocyst criteria : best prognostic ones = expansion capacity en hatching

	pregnancy chance %	tot prevalence %	prevalence/pt %
grade 1	5	20	8
grade 2	10	12	8
grade 3	18	26	17
grade 4	42	32	41
arade 5	47	9	26

Current way of blasto scoring PPV - NPV - Accuracy

multicentric study on 619 patients

Best PPV : 47 %chance when looking good for a PregBest NPV : 90 %chance of no implantation if poor morphology

Best Accuracy : 50 % (= % correct classifications)

GENE EXPRESSION in human FOLLICLE or OOCYTE useful to predict further development ?

- We TREAT : from Gougeon stage 5 up to stage 8
- Determine oocyte dev stage of maturation :
 competence to GVBD : useful for IVM
- oocyte dev potential: cytoplasmic competence
 - capacity to fertilise
 - capacity to become embryo
 - capacity to become an healthy child

useful for IVF / ICSI

Actual NEEDS in IVF (ICSI) and IVM

IVF :

- Which oocyte has developmental potential ?
- choose 'the best' among the embryos

IVM :

- make selection in the aspirated COC
- is the oocyte nuclear competent ?

 if yes : induce maturation stimuli
 if no : pre-culture before inducing meiosis

PATIENT BENEFITS ?

 zero risk for multiple pregnancy and also

- limit time-to-pregnancy

help embryologist in decisions to plan 'Oocyte & Embryo' management

TZP : communication

Courtesy Prof SUZUKI

STRATEGIES :

- use discrete n° of genes : QPCR
- multiplex PCR
- use microarray

elements determining applicability in clinical setting:

- speed / ease / accuracy
- cost

Find candidate genes.... as molecular markers HOW ?

detect mis-expression on a background of normal gene-inherent variation in transcript levels

However over- or under expression are not dramatic (factor 2-4)

METHODOLOGICAL NEEDS

1- very accurate quantitative measurements

2- need to measure several genes

DNA Microarrays: to screen QRT-PCR : to dose

How to build candidate list of 'quality' genes

- collect cumulus prospectively
- analyse in relation to a posteriori outcomes :
 e.g. ongoing pregnancy or not / arrest of development
- Do array on sufficient n° of biol replicates
- Bioinformatics : find "significant" changes
 'hit' gene list to be validated by QPCR on new samples

Today's literature : estimation !

"At best 30 % of the differentially expressed genes found in microarray are confirmed by QPCR"

QPCR: cells used in Human ART Labs

- Floating granulosa cells : are 'cumulus- alike'
- Cumulus-corona cells : first 3 layers
- Post hCG 36-40hr (= sole occasion to obtain cells in IVF)
- Pre-hCG (only in IVM laboratories)
- in literature CRITERIA for "GOOD outcome" were :
 - 'Fast' dividing embryos
 - morphological criteria of Day 3 embryos
 - Pregnancy outcome
 - very few data available, is long term research

Work from Human ART Labs

- Post hCG material
 - Mc Kenzie (2004); Feuerstein (2007);
 - Van Montfoort (2008)
 - Hamel (2008); Anderson (2009); Assou (2009)
- GENES generally DIFFER BETWEEN THE REPORTS
- The FEW EXCEPTIONS ARE :

PTGS2, GREM1, HAS2, PTX3, VCAN, GPX3, TNFAIP6, HSD3B1

Predictive gene 'families'

- mucification
- calcium metabolism
- glutathion (ROS scavenging)
- TGF beta
- EGF related
- glucose transport
- luteinisation process

Work from Human ART Labs 2004 - 2012

Genes CONFIRMED by OTHERS
 Genes tested in an INDEPENDENT dataset:

FEW

PROSPECTIVELY CHECKED
 Genes confirmed as useful in prosp clinical trial... :

NONE ?!

Practically : RNA in human cumulus potential study biases

- Effect of background characteristics : age / BMI, ...
- Effect of stimulation protocol : FSH ± LH-activity
- Effect of culture medium
- Effect of cell sampling (Hyaluronidase)
- Laboratory conditions : T°, sterility, speed

VARIABILITY

Between-patient variability :

- study pooled cumulus : from MII , M1, GV

• Between-follicle variability :

study cumulus from one-by-one cultured oocytes : MII

between-patient variation

- There is important patient to patient variation by:
 - Age & BMI
 - Ovarian responsiveness
 - The stimulation protocol
- CONSEQUENCES for pregnancy prediction genes :
 - need to analyze a large number of patients
 - need to stratify patient population
 - Age (BMI)
 - Stimulation protocol
 - Serum FSH
 - ...

Or : introduce correction factors evidenced by stepwise multivariate regression analysis

(Adriaensens et al, 2010)

Predictive Power?

- -Outcome is Multifactorial
- -Gene expression is 'biased' by other factors
- Make linear regression model : Y= a + bX + cZ +dT
 - Y : gene expression
 - X, Z, T patient and treatment related variables
 - B, c, d indexes
 - a: intercept

Significance of models set at P<0,01

EXAMPLE :

for a specific stimulation protocol Log (Grem)= 1,608 -0,0009 (Age) -0,11 (Prog)-0.0002 (>7cell on Day 3)

(Adriaensens et al, 2010)

Predict developmental competence among sibling MII oocytes by CC transcript quantification ?

Within-patient variation

Relation oocyte competence to expression profiles?

- "competence" outcome parameters are:
 - » Embryo development : D3 and/or D5
 - » Ongoing Clinical Pregnancy
 - » Live Birth
 - Calculate Efficiency of prediction model :
 - PPV
 - NPV
 - Accuracy : % correct answers

Strongest predictive genes obtained after 3 studies

Does oocyte competence relate to CC expression ?

Analyse Human Cumulus Cells from Individual oocytes

Genes analyzed:	
SDC4	Extra cellular Matrix/Signaling
VCAN	Extra cellular Matrix
ALCAM	Signaling
PTGS2	LH/EGF signaling
GREM1	BMP (oocyte) signaling
TRPM7	cation channel (Ca ²⁺ , Mg ²⁺ , Zn ²⁺ ,)
CALM1,2	Ca ²⁺ Signaling
ITPKA	Ca ²⁺ Signaling

**7 additional Genes analyzed:

*8

CA1	Ca2+	- Sig	nalin	g	
		• •	_	-	

- CA2 Regulates steroidogenesis and Ca2+ conc.
- CA3 Regulates steroidogenesis and Ca2+ conc.
- CA4 Regulates intracellular Ca2+
- NEU Neuronal factor (transmembr. Ligand)
- STER1 Steroidogenesis
- STER2 Steroidogenesis

(Wathlet et al, HR 2011) (Wathlet et al, 2012, in revision)

PRELIMINAR Conclusions

CC gene expression is influenced by:

- Age or BMI
- stimulation dependent biological parameters
- gonadotrophin preparation
- oocyte "quality"

oocyte competence prediction is possible using multiparametric gene model

Ongoing Pregnancy (PPV and NPV >80%)

Some promising genes for Pregnancy Prediction got identified PROSPECTIVE STUDY needed for evaluating discrim. power

Future Work = *Prospective study*

Do Single Embryo Transfer : Group 1 : embryo selection day 3 : morph Group 2 : gene panel (3-5) in cumulus

Evaluate prediction model with "top 5 genes": expected increase : a 30 % gain in pregn rate

If we would want an increase from 40 (baseline) to 70% OPR Needed : 40 to 50 patients in each arm of the study