Immunophilin FKBP52 deficiency confers uterine-specific resistance to progesterone signaling during pregnancy

S. K. Dey, PhD
Cincinnati Children's Research Foundation
Cincinnati, Ohio

Master regulators: Estrogen and Progesterone

1. Prostaglandin-nuclear receptor-angiogenic signaling axis (cPLA2α/Cox2/PPARδ/Vegf/Flik1/Ang/Tie)
2. miRNA regulation of genes during implantation
3. Cytokine-growth factor-homeobox-morphogen signaling axis (Lif/Hb-Egf/Hoxa10/Msx1/Ihh/Bmp/Wnt)
4. Ligand-receptor signaling with endocannabinoids (Anandamide-CB1)
5. Immunophilin/cochaperone signaling with PR (Fkbp52-PR)

Events of Early Pregnancy

[Diagram]

Nat Rev Genet, 7: 185, 2006
Coordinated effects of E₂ & P₄ determine the window for uterine receptivity

Proliferation patterns on days 1 and 4 of pregnancy

- Under estrogen influence
 - Luminal epithelium proliferation
 - I_e, luminal epithelium
 - S, stroma

- Under progesterone influence
 - Luminal epithelium differentiation
 - Stromal proliferation

Attachment reaction between the blastocyst and uterine luminal epithelium occurs on day 4 midnight

- Attachment site
 - Blasticid
 - Luminal epithelium
 - Struma
Localized endometrial vascular permeability occurs with the onset of the attachment reaction.

Blue dye reaction

- **Paracrine/juxtacrine interactions**
 - Trophoderm - uterine luminal epithelium interaction (Epithelial-epithelial)
 - Epithelial-mesenchymal interaction (luminal epithelium-stroma)

- **Vascular permeability and angiogenesis**

- **Regulated growth** (proliferation and differentiation):
 - Decidualization

Embryo implantation is a powerful model system to study:

1. Paracrine/juxtacrine interactions
 a. Trophoderm - uterine luminal epithelium interaction (Epithelial-epithelial)
 b. Epithelial-mesenchymal interaction (luminal epithelium-stroma)

2. Vascular permeability and angiogenesis

3. Regulated growth (proliferation and differentiation):
 - Decidualization
Progesterone: the “pregnancy” hormone

- Absolutely required for pregnancy success in most mammals studied
- Ovulation
- Fertilization
- Uterine receptivity
- Decidual response
- Maintenance of uterine quiescence until parturition

- Works via its nuclear steroid hormone receptor, *progesterone receptor (PR)*

Steroid Hormone-Receptor Complex

Cochaperones

- Tetra-tricopeptide repeat domain (TPR) binds Hsp90
- Two members of FK506 binding family of immunophilins: FKBP52/FKBP4 and FKBP51/FKBP5
- Cyclosporin-binding immunophilins: Cyclophilin 40 (Cyp40) and protein phosphatase PP5
- FKBP52 and FKBP51: peptidylprolyl cis/trans isomerase activity domain and catalyses conformational changes in protein substrates
- FKBP52 and FKBP51 have different functions toward steroid receptors
Hoxa10 null mice have reduced uterine P4 responsiveness

- Proteomic analysis of WT and Hoxa10−/− uterine stromal cells
- Identified FKBP52 as a protein downregulated in Hoxa10−/− stromal cells

FKBP52 is a cochaperone for PR

Mol Endo 19:683, 2005

PR null mice

- Precludes using this mouse model to examine the role of progesterone (P4) in early pregnancy events

Fkbp52 null mice

- Males have decreased androgen receptor responsiveness (*Cheung-Flynn et. al, Mol Endo* 19: 1654, 2005)
- Reason for female infertility remained unknown

Infertile Phenotype of Fkbp52/C57 null females

<table>
<thead>
<tr>
<th>Genotypes (males x females)</th>
<th>No. of breeders</th>
<th>No. of litters</th>
<th>Average litter size</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/- x ++</td>
<td>28</td>
<td>81</td>
<td>6.9 ± 3.0</td>
</tr>
<tr>
<td>+/- x +/-</td>
<td>63</td>
<td>195</td>
<td>6.7 ± 3.0</td>
</tr>
<tr>
<td>+/- x --</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fkbp52 null (−/−) females cohabitated with wild-type (+/+;+/-) fertile males failed to produce any offspring, while the average litter sizes from Fkbp52+/+ and Fkbp52+-/ females were comparable (mean ± SD).
Modulation of PR activation by FKBP52

Examine various stages of early pregnancy in Fkbp52⁻/⁻ females
- Ovulation
- Fertilization
- Implantation

- Ovulation and fertilization are comparable to WT females
- What is the reason for infertility in Fkbp52⁻/⁻ females?
FKBP52 and PR expression overlaps in periimplantation uteri

Implantation fails in Fkbp52/C57 null mice as examined on day 5 of pregnancy

Embryo transfer experiments show that wild-type blastocysts fail to implant in Fkbp52/C57 null females

<table>
<thead>
<tr>
<th>Genotype</th>
<th>No. of blastocysts transferred</th>
<th>No. of recipients</th>
<th>No. of mice with IS</th>
<th>No. of IS (%)</th>
<th>No. of IS</th>
<th>No. of blastocysts recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/-</td>
<td>178</td>
<td>10</td>
<td>8 (80%)</td>
<td>4 (41%)</td>
<td>7.3 ± 4.0*</td>
<td>2a</td>
</tr>
<tr>
<td>+/-</td>
<td>79</td>
<td>4</td>
<td>0 (0%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*a2 mice without IS yielded one blastocyst each
*b14 blastocysts were recovered from 3 recipients
*mean ±SD
Decreased expression of PR-regulated genes in uteri on day 4 of pregnancy in Fkbp52 null females

FKBP52 is critical to uterine receptivity and implantation in mice

C57Fkbp52/ null mice:
- Normal ovulation
- Implantation failure
 - Reduced P4 responsiveness
 - Exaggerated estrogenic influence

PNAS 102: 14326, 2005

Ovulation is not impaired suggesting uterine responsiveness to PR signaling differs from ovarian responsiveness

Locally high P4 levels in the ovary may enhance basal PR activity sufficient for ovulation

Fkbp52-/− MEFs
Determine whether exogenous P4 treatment rescues the infertile phenotype of Fkbp52 null mice

- Use silastic implants placed on day 2 of pregnancy (day 1 = vaginal plug)
- Examine implantation on day 5 of pregnancy

P4 fails to rescue implantation of transferred WT blastocysts in C57 Fkbp52 null females

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Blasted Recipient</th>
<th>No. of blastocysts transferred</th>
<th>No. of Recipients</th>
<th>No. of IS (%)</th>
<th>No. of embryos recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT WT</td>
<td>82</td>
<td>6</td>
<td>48/82 (59%)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>WT KO + P4</td>
<td>83</td>
<td>5</td>
<td>6/83 (7%)</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

P4 supplementation fails to restore expression of P4-regulated genes (Hoxa-10, Ihh and Areg) critical for uterine receptivity.

Rescue implantation failure in Fkbp52 null uteri on a different genetic background

- CD1: outbred, more robust reproduction
- Changed background of mice to CD1 background to F10 generation

- Can P4 supplementation rescue implantation failure in Fkbp52/CD1 null mice?
 - First characterize reproductive phenotype
Fkbp52/CD1 null females have normal ovulation and fertilization

- **Figure A:** Graph showing the number of apposed eggs.
 - WT: 10, KO: 8
- **Figure B:** Graph showing the percentage of eggs fertilized.
 - WT: 100%, KO: 70%

Implantation fails in CD1 Fkbp52 null females

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Day of Pregnancy</th>
<th>No. of Mice</th>
<th>No. of Mice with IS (%)</th>
<th>No. of IS</th>
<th>No. of embryos recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>5</td>
<td>16</td>
<td>16 (100%)</td>
<td>12.2 ± 0.3</td>
<td>n/a</td>
</tr>
<tr>
<td>KO</td>
<td>5</td>
<td>14</td>
<td>2 (14%)</td>
<td>7.0 ± 0.3</td>
<td>66</td>
</tr>
<tr>
<td>KO+P4</td>
<td>5</td>
<td>11</td>
<td>9 (81%)</td>
<td>10.3 ± 0.5</td>
<td>17</td>
</tr>
</tbody>
</table>

P4 implant rescues implantation failure in CD1 Fkbp52 null females

- Day 5 implant rescues implantation failure in KO+P4 females.

Graph:
- **Day 5:**
 - WT: Embryos
 - KO: Embryos
 - KO+P4: Embryos
P4 supplementation restores P4-regulated gene expression in CD1 Fkbp52 null uteri on day 4

P4 supplementation restores implantation-specific gene expression in CD1 Fkbp52 null uteri on day 5

P4 supplementation rescues pregnancy through day 12 in Fkbp52/CD1 null females
P4 supplementation via implants fails to restore normal pregnancy examined on day 14 in CD1 Fkbp52/- females

P4 supplementation via implant cannot restore normal pregnancy to term

Defective placental development in P4-treated CD1 Fkbp52/- females
Does daily P4 injections rescue pregnancy to full-term in CD1 Fkbp52-/ females?

- Inject mice with P4 (2 mg/0.1ml oil/mouse) sc from day 2 of pregnancy until sacrifice (D14) or D17 to allow labor to occur.

Daily P4 injection rescues pregnancy through day 14

Daily P4 injection restores full-term pregnancy in CD1 Fkbp52-/ females
Serum P4 levels in Fkbp52 null mice treated with implant or daily injection

A

Day 14 WT: 45 ng/ml
Day 14 KO Imp: 100 ng/ml
Day 14 KO Inj: 156 ng/ml

Proposed model for pregnancy rescue in the presence of high P4 levels

Conclusions

• The major reproductive phenotype in mice missing Fkbp52 is unique to uterine deficiency in the context of implantation
• P4-P4-FKBP52 signaling is a function of genetic makeup
• More robust P4-P4 signaling is required for pregnancy maintenance than is required for uterine receptivity and implantation in Fkbp52 null mice
• Blastocyst's presence determines the ability of P4 to rescue decidualization
• FKBP52 may have a unique PR-independent role during pregnancy (placenta/embryo?)

JCI 117: 1824, 2007
Clinical Implications

* Infertility and P4 resistance
Exogenous P4 treatment results in a decrease in miscarriages in women with history of pregnancy loss

* Endometriosis and P4 resistance
P4 resistance promotes this disease process

Endometriosis model using *Fkbp52*-/- mice

CD1 female mice (7-10 wk old)
Estrous cycle: Diestrus

Donor
WT or *Fkbp52*-/-
Injection of minced donor uteri into the recipient peritoneum

Recipient
WT or *Fkbp52*-/-
Evaluation of lesions
0 1 2 (weeks)

Fkbp52 deficiency promotes endometriotic lesions
Fkbp52 deficiency promotes endometriotic stromal cell proliferation and increases recipient-derived microvessel density in ectopic lesions

FKBP52 protein expression in human endometriosis

Mouse ectopic lesions

Hemosiderin deposition and hemorrhage

Arrow heads indicate the sites of lesions

Microvessel density

WT-WT/Flk1LacZ

KO-KO/Flk1LacZ
FKBP52 deficiency promotes endometriosis
(AM J Path 173:1747-1757, 2008)

Acknowledgements
• Susanne Tranguch
• Yasushi Hirota
• Haibin Wang
• Huirong Xie
• Xiaofei Sun
• Hao Zhang
• Jyoung Hong

NRSA/NIDA, NICHD, NIDA

Fkbp52 mRNA expression in human endometriosis

PP: Proliferative Phase
SP: Secretory Phase
Fkbp52 deficiency promotes endometriotic stromal cell proliferation

P4 supplementation fails to restore expression of P4-regulated genes critical for uterine receptivity

Hoxa-10, Ihh and Areg

P4 supplementation restores P4- and estrogen-target gene expression in CD1 Fkbp52 null uteri on day 4