Immobilisation versus immediate mobilisation after intra-uterine insemination; a randomised controlled trial

IM Custers1, PA Flierman2, P Maas3, T Cox4, HJHM van Dessel5, MA Gerards6, MH Mochtar1, CAH Janssen5, F van der Veen1, BWJ Mol7

1Academic Medical Centre, 2Onze Lieve Vrouwe Gasthuis, 3Antonius Hospital, 4TweeSteden Hospital, 5Groene Hart Hospital, 6Martini Hospital and 7Máxima Medical Centre

Introduction

Unresolved issue: supine position or immediate mobilisation?

PICO-question

• Primair subfertiel paar
• Man 33 jaar; vrouw 34 jaar
• 26 maanden bezig
• OFO normaal (VCM 42 ml; PCT normaal)
• Diagnose: subfertilité e.c.i.
• Behandelplan: IUI met milde stimulatie
• 10 minuten blijven liggen of opstaan
A randomized study of the effect of 10 minutes of bed rest after intrauterine insemination

Department of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada

Aim: To evaluate the effects of 10 minutes of bed rest after intrauterine insemination (IUI) on the pregnancy rate.

Design: Prospective randomized study.

Setting: University setting.

Participants: 100 patients undergoing IUI were randomized into two groups: Group A (bed rest for 10 minutes after IUI) and Group B (no bed rest after IUI).

Intervention: Patients in Group A were instructed to remain supine for 10 minutes after IUI, while patients in Group B were allowed to assume their usual position immediately after IUI.

Main Outcome Measures: Pregnancy rates were compared between the two groups.

Results: Of the 100 patients, 90 in Group A and 90 in Group B were eligible for analysis. There were 21 pregnancies in Group A (23.3%) and 15 pregnancies in Group B (16.7%). The difference was statistically significant (p = 0.04). The mean age of the patients in Group A was 36.7 years, and in Group B, it was 37.1 years (p = 0.25).

Conclusion: A 10-minute period of supine rest after IUI has a positive effect on the pregnancy rate. It is recommended to instruct patients to remain supine for 10 minutes after IUI to optimize pregnancy chances.

<table>
<thead>
<tr>
<th></th>
<th>Pregnant</th>
<th>Not pregnant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>16</td>
<td>104</td>
</tr>
<tr>
<td>Move</td>
<td>4</td>
<td>86</td>
</tr>
</tbody>
</table>

NNT = 1 / (13.3% - 4.4%) = 11 cycli blijven liggen voor 1 extra zwangerschap
95% betrouwbaarheidsinterval 6 tot 68

Objective

- Assess the effect of 15 minutes of immobilisation versus immediate mobilisation after Intra Uterine Insemination

Study design

Multi centre trial
7 clinics
Study design

• Inclusion criteria:
 – All patients with an indication for IUI
 • With fresh or cryo-preserved sperm (donor or husband’s)
 • With or without controlled ovarian hyperstimulation
 • Anovulatory women: after failed ovulation induction
 – At least one patent tube
 – At least 18 years of age

Study design

• All couples underwent basal fertility work up
 – Diagnosis male factor subfertility: TMC < 10 *10⁶/mL
 – Cervical factor: no progressive spermatozoa in (at least one well-timed) PCT (TMC >10 *10⁶/ml)
 – Unexplained subfertility: PCT positive, progressive and TMC >10 *10⁶/ml

Study design

• Informed consent obtained
• Randomisation by computer
 – Before the first insemination
 – Stratification: female age and centre
• Parallel design
• Three consecutive cycles in supine position after IUI or three cycles immediate mobilisation
Study design

• Procedure IUI:
 – COH with:
 • Clomiphene citrate
 • r/uFSH
 – No COH
• Timing of ovulation with 5000 IU HCG
• Insemination of 0.3-1.0 mL of processed spermatozoa
• Insemination in lithotomy position with Trendelenburg tilt

Validity

• Randomisation
• Blinding of allocation (concealment)
• Blinding of endpoint
 • Patienten / doctors / observers
• Follow-up
• Intention to treat analysis

Comparable groups?
Randomisation

- Envelopes
- Computers
- Webbased
- Telephone
 - Independent party
- Concealment
Follow up

• 3 cycles of IUI (max. of 4 months) or
• ongoing pregnancy (12 weeks gestation)

Outcome measures

• Primary outcome measure
 – Ongoing pregnancy rate per couple

• Secondary outcome measures
 – Live birth rate
 – Pregnancy rate per cycle
 – Multiple pregnancies
 – Miscarriages
 – Ectopic pregnancies
 – Biochemical pregnancies
Power calculation

- Testing the 0-hypothesis
- Alpha-error beta-error
- Equivalence study
- Lasagna’s law

Increase of 4% per cycle (= 12% per couple),
- A dropout rate of 10%
- 185 couples per arm
 (one-sided test, α-error of 0.05, β-error of 0.20).
Analysis

• Intention to treat principle
• Primary and secondary outcome measures expressed in PR per couple and RR with 95% CI

Logistics

• Research nurses
• Data collection

Results

Trial profile
Results

Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>15 Minutes of immobilisation (n=199)</th>
<th>Immediate mobilisation (n=192)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female age (years)</td>
<td>33.9 ± 3.8</td>
<td>33.3 ± 3.9</td>
</tr>
<tr>
<td>Duration of subfertility (years)</td>
<td>2.7 ± 1.4</td>
<td>2.7 ± 2.3</td>
</tr>
<tr>
<td>Primary subfertility</td>
<td>158 (79)</td>
<td>158 (77)</td>
</tr>
<tr>
<td>Cause of subfertility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexplained</td>
<td>118 (59)</td>
<td>109 (56)</td>
</tr>
<tr>
<td>Cervical factor</td>
<td>58 (29)</td>
<td>63 (33)</td>
</tr>
<tr>
<td>Poor semen quality²</td>
<td>23 (12)</td>
<td>24 (13)</td>
</tr>
<tr>
<td>One-sided tubal pathology</td>
<td>21 (11)</td>
<td>20 (10)</td>
</tr>
<tr>
<td>Normal</td>
<td>118 (60)</td>
<td>124 (65)</td>
</tr>
<tr>
<td>Gris</td>
<td>1 (1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Values between (..) are percentages

*Values are means ± SD

²TMC <10⁶/ml

Results

Outcome measures, intention to treat analysis

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>15 min. immobilisation (n=199)</th>
<th>Controls (n=192)</th>
<th>RR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing pregnancy (%)</td>
<td>54 (27)*</td>
<td>34 (18)**</td>
<td>1.5 (1.1-2.2)</td>
<td>0.01</td>
</tr>
<tr>
<td>Live birth (%)¹</td>
<td>53 (27)</td>
<td>32 (17)</td>
<td>1.6 (1.1-2.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Twin pregnancy²</td>
<td>3 (6)</td>
<td>1 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscarriages (%)</td>
<td>14 (7)</td>
<td>17 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectopic pregnancy (%)</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical pregnancy (%)</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cycles performed</td>
<td>2.4</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*4 spontaneous pregnancies, 1 after escape IVF

**5 spontaneous pregnancies

¹16 couples still pregnant, considered as live birth in analysis

²Calculated per ongoing pregnancy

Results

Outcome measures, survival curve

[Graph showing survival curve with labeled axes and data points]

log-rank test, p = 0.026
Conclusions

- Immobilisation after IUI leads to increased ongoing pregnancy rates
- Immobilisation should be incorporated in IUI guidelines