'Statistical Inference' Prof Gino Verleye, Ph.D. University Gent.

- Introduction: what is Statistical inference?
- Ideal world versus reality: data quality issues and solutions
- The nature of sample parameters
- Statistical inference implies making errors
- Decision tree for classic analysis procedures
- Software: innovations that make your life easier

What does Statistical Inference mean?

- Statistical practice happens on three levels:
 - 1° Descriptive Statistics: compute parameters (means, fractions, crosstables, correlations,...) on the data at hand
 - 2° Inferential Statistics: bring in the notion of probability samples: learn from the sample data and project towards the population
 - 3° Statistical Modeling: compute complex relationships between manifest and even latent variables

Example from Human Factors & Medicine program in NATO

Measuring and modelling Psychosocial Resilience in civil populations

•	
•	
•	
_	
•	
•	
•	
•	

Descriptive level

- Do men and woman have the same levels of fear in public places?
 - Fear: metric variable
 - Gender: Nominal 2category variable

Inferential level

• Which error do I make when saying that the gender difference is for real in the population?

• Implies statistical testing with the appropriate method: ANOVA or t-test in this case

Ideal world versus reality: data quality issues and solutions

- Ideal world: no missing data and normal distributions (required by many inferential methods)
- Real world:
 - Missing data: item & unit level
 - Non normality is a fact

Missing data

- Unit missing:
 - example: male and females 50%-50%
 - Sample data : 40%-60%

Issue : we can not be representative : too much female information

Weighting: boost males, downsize females

Missing data

- Item missing:
 - It is not the fraction of non observed data that counts
 - It is the NATURE of the missing data process:
 - Completely at random: OK but realistic?
 - At random: very often the case, OK for stats
 - Non ignorable: very often : troublesome, dramatic
 - Solution: smart imputation, special estimation methods, look out: usualy listwise deletion: a case is entirely dropped if one variable is missing

The nature of sample parameters

- They vary from sample to sample
- But : we only have one sample in practice
- Mathematical statistics learn:
 - If N>30, sample parameters are drown from a normal distribution, with known error margin: the standard error: standard deviation of the parameter estimate
 - Error decreases with N: intuitive logical
 - Requires random sampling!!!

Hypothesis testing...implies making errors

Ho: true mean= xH1: true mean <> x

• Alpha: we control it

• Beta: unknown: only simulate

Alpha & Beta are the prices you pay to infer from sample to population

Which methods to apply?

- Relation between 2 categorical variables: cross table with chi2 test
- Compare 2 means: t-test
- Compare >2 means : one way anova
- Compute linear relationship: correlation

• Relation between 2 categorical variables: cross table with chi2 test

	Summary Frequency Table (nato1.STA)						
	Marked cells have counts > 1000						
	(Marginal summaries are not marked)						
	GENDER	TIMETV	TIMETV	TIMETV	TIMETV		
		0-30	31-60	61-120	120+		
Count	male	107	135	165	104		
Row Percent		20,94%	26,42%	32,29%	20,35%		
Total Percent		10,40%	13,12%	16,03%	10,11%		
Count	female	83	105	170	160		
Row Percent		16,02%	20,27%	32,82%	30,89%		
Total Percent		8,07%	10,20%	16,52%	15,55%		
Count	All Grps	190	240	335	264		
Total Percent		18,46%	23,32%	32,56%	25,66%		

Summary Table: Expected Frequencies (nato1.STA)									
Marked cells have counts > 1000									
Pearson Chi-square: 18,6882, df=3, p=,000317									
GENDER	TIMETV	TIMETV	TIMETV	TIMETV	Row				
	0-30		61-120		Totals				
male	94,3537	119,1837	166,3605	131,1020	511,000				
female	95,6463	120,8163	168,6395	132,8980	518,000				
All Gree	190,0000	240,0000	335,0000	264 0000	1029 000				

Marked cells have covers s 1000-5 p. 000317
GENDER, PRISON CHAPTER TO THE TO TH

T-tests: Grouping: GENDER: gender (nato 1.STA)
Group 1: male
Group 2: temble
Fender
Fen

• Compute linear relationship: correlation

The other way: drobots.com

- In order to apply statistics correctly, one needs a lot of knowledge and some experience
- Statistical anxiety exists
- Fast analysis & reporting
- Manifest & latent levels
- Internet solution

