Early pregnancy after controlled ovarian hyperstimulation

Ilkka Järvelä Oulu University Hospital Finland

Disclosure of commercial and/or financial relationships with manufacturers of pharmaceuticals, laboratory supplies and/or medical devices

• None

Why is early pregnancy important?

- Fetal organogenesis takes place
 - 5-10: period of greatest sensitivity to teratogenesis
 - Neural tube defects, oesophageal atresia, anal atresia, exomphalos, situs inversus, acro-renal field defect etc.
- Placenta
 - Two thirds of the primitive placenta disappears by the end 1st trimester
 - Primary, secondary and tertiary villi develop
 - Secretory function

Placenta, end of 1st trimester

- up to 10 weeks feto-placental blood flow is limited
 - placental villi display only a few capillaries
 - fetal blood extremely viscous
- by 10-14 weeks gestation
 - two-thirds of the primitive placenta disappears

Placental maturation

- 1st trimester
 - increase in trophoblast tissue
 - SECRETORY FUNCTION
- 2nd and 3rd trimester
 - number of trophoblasts decline
 - remaining syncytial layer thin
 - TRANSPORT OF COMPUNDS

CORPUS LUTEUM

• Pregnancy 4 weeks

CORPUS LUTEUM

• Pregnancy 4 weeks

Luteal-placental shift 200 100 LutealPlacental Shift Placental 20 10 Corpus Luteum 2 4 6 8 10 12 14 32 36 40

Progesterone

- endometrial decidualization
- smooth muscle contractility ↓
- prostaglandin (PG) formation ↓
- immune responses ↓
 inhibits T-lymphocytemediated tissue rejection

CL vasculature

- The capacity of the CL to produce P is closely related to the extent of its vascular network (Niswender et al., 1976; Miyazaki et al., 1998; Niswender et al., 2000; Järvelä et al., 2007).
- CL angiogenesis controlled by local secretion of growth factors (Hazzard and Stouffer, 2000)
 - vascular endothelial growth factor (VEGF) (Sugino et al., 2000; Wulff et al., 2001a,b).

Early pregnancy, spontaneous conception

- 1 single corpus luteum after monofollicular ovulation
- CL rescued by trophoblastic hCG secretion after implantation
- Luteoplacental shift at 7-8 pregnancy week

Early pregnancy, spontaneous conception • Dominant ovary volume and vascularization decrease througjout the 1st trimester • Placenta and gestational sac grow continuously Järvelä I Y et al. Hum. Reprod. 2008;23:2775-2781

Risk of adverse perinatal outcome after fresh embryo transfer (after COH) in singleton pregnancies

- preterm birth (PTB)
- low birth weight (LBW)
- congenital anomalies
- perinatal mortality

Why?

- factors related to the hormone stimulation and/or IVF methods per se
 - Multiple corpora lutea?
- epigenetic modification in human embryos
- Subfertility "time to pregnancy"
 - Increases the risk for LBW, SGA, preterm delivery, malformation and neonatal mortality
- Why do singletons conceived after assisted reproduction technology have adverse perinatal
 outcome? Systematic review and meta-analysis.Pinborg A, Wennerholm UB, Romundstad
 LB, Loft A, Aittomaki K, Söderström-Anttila V, Nygren KG, Hazekamp J, Bergh C. Hum
 Reprod Update. 2012 Nov 14.

Controlled ovarian stimulation (COH)

- COH aims to mature several FSH sensitive antral follicles during IVF/ICSI treatment
 - Agonist or antagonist protocol
- hCG injection 36h before egg collection converts follicles into corpora lutea
 - hCG resembles LH peak during spontaneous cycle
- Several corpora lutea created
 - hCG rescue?
 - function during early pregnancy?

Pregnancy week 7 after COH

- Fetus and yolk sac
- Ovarian volume 17 ml, vascularized volume 6 ml (VI 35%)

Progesterone

- Johnson et al 1993
 - CC+HMG or HMG alone IVF (n=62), no control group
- Johnson et al 1994
 - CC+HMG IVF (n=22)
 - GnRH-agonist HMG IVF (n=17)
- Costea et al 2000
 - GnRH-agonist HMG IVF (n=41)

Progesterone (amel/l)								lomipi	bene)
200	SERVINGE STATES	STREET	SHERRINGER	: Ellinger	•				
100	-						Special Control of the Control of th		

Estradiol

- Johnson et al 1993
 - CC+HMG or HMG alone IVF (n=62), no control group
- Johnson et al 1994
 - CC+HMG IVF (n=22)
 - GnRH-agonist HMG IVF (n=17)
 - Control group (n=18)

PAPP-A

- In first trimester screening for T21
- 10% lower in ART pregnancies than in control group
 - Gjerris et al 2009
 - Amor et al 2009
 - Kagan et al 2008
 - Multiple corpora lutea (Weiszet al 2006)
 - Delay in fetal and placenta development (Hui et al 2005, Maymon 2004 et al)

Second trimester screening

- Unconjucated estriol (uE3)
 - Decreased values
 - Barkai et al 1996
 - Frishman et al 1997
 - Wald et al 1999
 - Maymon and Shulman 2002
 - Muller at al 2003
 - Increased values
 - Rice et al 2005

•			

Increased risk of blastogenesis birth defects

Halliday et al 2010

- ART 6946
 - Fresh ET 4323 after COH,
 - Thawed ET 2623 (spontaneous cycle)
- non-ART controls 2083
- Blastogenesis defects (adjusted OR to non-ART)

Fresh ET 3.65 (2.02-6.59)Thawed ET 1.60 (0.69-3.69)

_			•		
⊢	⊢ I	VS	tra	٩ςh	۱ – ۱
		v.¬	115	TI	

- Frozen-thawed embryo transfer FET
 - No COH
 - Spontaneous cycle or HRT
- CoNARTaS Wennerholm NFS 2012, Sweden Norway and Denmark, n=6653
 - PTB 0.9 (0.8-1.0)
 - LBW < 2500g 0.8 (0.7-0.9)
 - SGA 0.8 (0.7-0.9)
 - LGA 1.4 (1.2-1.6)

FET vs spontaneous pregnancies

- No difference (?) in
 - PTB
 - LBW
 - SGA
 - Perinatal mortality
- LGA risk increased
- Pelkonen HR 2010, Pinborg FS 2010, Sazonova HR 2012

			_
			_
			_
l .			
			_

Järvelä et al submitted

- Three groups, early pregnancy 4-11 weeks
 - Spontaneous pregnancies n=41
 - IVF/ICSI pregnancies n=40 (fresh embryo transfer after COH)
 - Frozen-thawed embryo pregnancies n=30 (natural cycle)

Järve	lä	Ωŧ	2	ارزيا	hm	itto	M
Jarve	ıa	61	d	ı Su	11(1	11116	נ)י

- Results presented in Maribor 2013
 - Singleton pregnancies
 - Weekly visits
 - hCG, P, 17OHP, E2, PAPP-A, CL activity, CRL, GS

Conclusion

- COH
 - The luteal activity significantly increased for the first weeks of pregnancy
 - Effect on placentation
- Placenta
 - The placental development maybe delayed/disturbed after COH
- Association (?) with adverse outcome after fresh ET following COH

-	1	
	ĺ	
	l	
	ĺ	
	ĺ	
	ĺ	
	ĺ	
	•	